Supplementary Information

## Ceria-trapped single-atom rhodium catalysts for efficient ethanol steam reforming to hydrogen

## Lin Zhao<sup>#a,b</sup>, Diru Liu<sup>#b,c</sup>, Yiying Wang<sup>a,b</sup>, Mengyuan Zhang<sup>b,c</sup>, Qiang Wang<sup>a,\*</sup>, Guangyan Xu<sup>b,c,\*</sup>, Hong He<sup>b,c</sup>

<sup>a</sup>College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.

<sup>b</sup>State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

<sup>c</sup>University of Chinese Academy of Sciences, Beijing 100049, China.



Fig. S1: XRD pattern of Ce<sub>5</sub>/Al<sub>2</sub>O<sub>3</sub> catalyst.





Fig. S2: HAADF-STEM images of Rh/Al<sub>2</sub>O<sub>3</sub> catalyst.



Fig. S3: HAADF-STEM images of Rh-Ce<sub>1</sub>/Al<sub>2</sub>O<sub>3</sub> catalyst.

5 nm



Fig. S4: HAADF-STEM image and particle size statistic of Rh-Ce<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub> catalyst



Fig. S5: HAADF-STEM image and particle size statistic of Rh-Ce<sub>5</sub>/Al<sub>2</sub>O<sub>3</sub> catalyst.



**Fig. S6:** k<sup>3</sup>-weighted wavelet transforms for the Rh K-edge XAFS signals of Rh-Ce<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub> catalysts and standards. (a) Rh foil, (b) Rh<sub>2</sub>O<sub>3</sub>, (c) Rh/Al<sub>2</sub>O<sub>3</sub> and (d) Rh-Ce<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub>.



Fig. S7: EXAFS fitting curves at the Rh K-edge for Rh-Ce<sub>5</sub>/Al<sub>2</sub>O<sub>3</sub> catalyst.



Fig. S8: XPS spectra of Rh/Al<sub>2</sub>O<sub>3</sub> and Rh-Ce<sub>5</sub>/Al<sub>2</sub>O<sub>3</sub> in the low-binding-energy region (0-35 eV).



Fig. S9: (a) Ce 3d XPS spectra of Ce<sub>5</sub>/Al<sub>2</sub>O<sub>3</sub> and (b) O 1s XPS spectra of Rh-Ce<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub> catalysts.



Fig. S10: (a) Rh 3d spectra of Rh-Ce<sub>5</sub>/Al<sub>2</sub>O<sub>3</sub> at 4% poor H<sub>2</sub> and 10% rich H<sub>2</sub> reaction conditions. (b) Ce 3d spectra of Rh-Ce<sub>5</sub>/Al<sub>2</sub>O<sub>3</sub> at 4% poor H<sub>2</sub> and 10% rich H<sub>2</sub> reaction conditions.



**Fig. S11.** The correlation between different oxygen vacancy content and single-atom Rh content. (The oxygen vacancy content was obtained by calculating the ratio of  $O_{sur}/(O_{sur}+O_{lat})$  in O 1s XPS spectra. The single-atom Rh content was determined by integrating the geminal-dicarbonyl CO adsorption peaks area at 2088 and 2012 cm<sup>-1</sup> in CO-DRIFTS, subtracting the corresponding peaks area from Rh/Al<sub>2</sub>O<sub>3</sub> to eliminate the background contribution, the resulting value was then divided by the background-corrected peak area of the Rh-Ce<sub>5</sub>/Al<sub>2</sub>O<sub>3</sub> catalyst to obtain the relative amount of single-atom Rh.)



Fig. S12: H<sub>2</sub>-TPR profiles of Ce<sub>5</sub>/Al<sub>2</sub>O<sub>3</sub> catalyst.



**Fig. S13: (a)** Ethanol conversion and **(b)** H<sub>2</sub> production rates over Rh-Ce<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub> catalysts during the ESR reaction at different temperature. (reaction conditions: liquid feed of H<sub>2</sub>O/ethanol = 8 at 27.1  $\mu$ L min<sup>-1</sup>, with balance N<sub>2</sub> at 123 mL min<sup>-1</sup>, 20 mg catalyst and 80 mg SiO<sub>2</sub>).



Fig. S14: Carbon products production rate over Rh-Ce<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub> catalysts during the ESR reaction at different temperature. (a) CO<sub>2</sub> production rate, (b) CO production rate, (c) CH<sub>4</sub> production rate, (d) C<sub>2</sub>H<sub>4</sub> production rate. (reaction conditions: liquid feed of H<sub>2</sub>O/ethanol = 8 at 27.1  $\mu$ L min<sup>-1</sup> with balance N<sub>2</sub> at 123 mL min<sup>-1</sup>, 20 mg catalyst and 80 mg SiO<sub>2</sub>)



**Fig. S15:** Stability test of ESR reaction on Rh/Al<sub>2</sub>O<sub>3</sub> and Rh-Ce<sub>5</sub>/Al<sub>2</sub>O<sub>3</sub> catalysts. (reaction conditions: liquid feed of H<sub>2</sub>O/ethanol = 8 at 27.1  $\mu$ L min-1, with balance N<sub>2</sub> at 123 mL min<sup>-1</sup>, WHSV of ethanol = 37.02 h<sup>-1</sup>, 10 mg catalyst and 90 mg SiO<sub>2</sub>, 450 °C).



Fig. S16: Raman spectra of Rh/Al<sub>2</sub>O<sub>3</sub> and Rh-Ce<sub>5</sub>/Al<sub>2</sub>O<sub>3</sub> after different ESR reaction times at 450 °C.



Fig. S17: Ethanol conversion on Rh/Al<sub>2</sub>O<sub>3</sub> and Rh-Ce<sub>5</sub>/Al<sub>2</sub>O<sub>3</sub> catalysts in the C<sub>2</sub>H<sub>5</sub>OH/D<sub>2</sub>O reaction. (reaction conditions: liquid feed of D<sub>2</sub>O/ethanol = 8 at 27.1  $\mu$ L min<sup>-1</sup> with balance N<sub>2</sub> at 123 mL min<sup>-1</sup>, 20 mg catalyst and 80 mg SiO<sub>2</sub>, 450 °C).



**Fig. S18: (a)** *In situ* DRIFTS spectra of Rh/Al<sub>2</sub>O<sub>3</sub> catalysts exposed to 0.3% CH<sub>3</sub>CH<sub>2</sub>OH/Ar. **(b)** The formation of H<sub>2</sub>, CO<sub>2</sub>, CH<sub>4</sub>, CO, C<sub>2</sub>H<sub>4</sub> and H<sub>2</sub>O on Rh/Al<sub>2</sub>O<sub>3</sub>. **(c)** *In situ* DRIFTS spectra of surface intermediates on Rh/Al<sub>2</sub>O<sub>3</sub> during ESR reaction. **(d)** The formation of H<sub>2</sub>, CO<sub>2</sub>, CH<sub>4</sub> and CO during ESR reaction.



**Fig. S19:** *In situ* DRIFTS spectra of **(a)** Rh/Al<sub>2</sub>O<sub>3</sub> and **(b)** Rh-Ce<sub>5</sub>/Al<sub>2</sub>O<sub>3</sub> catalysts exposed to different reaction composition at 350 °C. The formation of H<sub>2</sub>, CO<sub>2</sub>, CH<sub>4</sub> and CO on Rh/Al<sub>2</sub>O<sub>3</sub> exposed to **(c)** CH<sub>3</sub>COOH/Ar and **(d)** H<sub>2</sub>O. (rection conditions: pre-exposed to 0.075% CH<sub>3</sub>COOH/Ar at 350 °C for 30 min, followed by Ar purging for 30 min, and finally exposed to 0.75% H<sub>2</sub>O for 60 min)



Fig. S20: (a) The correlation between formate species (1588 cm<sup>-1</sup>) and temperature change on Rh-Ce<sub>5</sub>/Al<sub>2</sub>O<sub>3</sub> exposed to 1%CO/1.2%H<sub>2</sub>O/Ar. (b) The correlation between derivative of H<sub>2</sub> production and temperature change on Rh-Ce<sub>5</sub>/Al<sub>2</sub>O<sub>3</sub> exposed to 1%CO/1.2%H<sub>2</sub>O/Ar.



**Fig. S21: (a)** *In situ* DRIFTS spectra of surface intermediates on Rh/Al<sub>2</sub>O<sub>3</sub> during WGS reaction. (b) The formation of H<sub>2</sub> and CO<sub>2</sub> on Rh/Al<sub>2</sub>O<sub>3</sub> during WGS reaction. (reaction conditions: 1% CO/1.2% H<sub>2</sub>O/Ar from 200 °C to 500 °C at a rate of 10 °C min<sup>-1</sup>). (c) *In situ* DRIFTS spectra of Rh/Al<sub>2</sub>O<sub>3</sub> catalysts exposed to CO/H<sub>2</sub>O/Ar and H<sub>2</sub>O/Ar at 200 °C. (d) The formation of H<sub>2</sub>, and CO<sub>2</sub> on Rh/Al<sub>2</sub>O<sub>3</sub> exposed to H<sub>2</sub>O/Ar. (rection conditions: pre-exposed to 1% CO/1.2% H<sub>2</sub>O/Ar at 200 °C for 30 min, and finally exposed to 1.2% H<sub>2</sub>O for 60 min)



**Fig. S22:** (a) *In situ* DRIFTS spectra of Rh/Al<sub>2</sub>O<sub>3</sub> catalysts exposed to 1% H<sub>2</sub>O/Ar. (b) *In situ* DRIFTS spectra of Rh-Ce<sub>5</sub>/Al<sub>2</sub>O<sub>3</sub> catalysts exposed to 1% H<sub>2</sub>O/Ar. (c) The formation of H<sub>2</sub>O on Rh/Al<sub>2</sub>O<sub>3</sub> and Rh-Ce<sub>5</sub>/Al<sub>2</sub>O<sub>3</sub>. (d) *In situ* DRIFTS spectra of Rh/Al<sub>2</sub>O<sub>3</sub> catalysts exposed to 1% CO/Ar. (e) *In situ* DRIFTS spectra of Rh-Ce<sub>5</sub>/Al<sub>2</sub>O<sub>3</sub> catalysts exposed to 1% CO/Ar. (f) The formation of CO on Rh/Al<sub>2</sub>O<sub>3</sub> and Rh-Ce<sub>5</sub>/Al<sub>2</sub>O<sub>3</sub>.

| Sample                                              | Temperature<br>(°C) | X <sub>EtOH</sub> (%) | $ m R_{H2}$ (mmol $ m g_{cat}^{-1}$ min <sup>-1</sup> ) | Ref       |  |
|-----------------------------------------------------|---------------------|-----------------------|---------------------------------------------------------|-----------|--|
| Rh-Ce <sub>5</sub> /Al <sub>2</sub> O <sub>3</sub>  | 450                 | 100                   | 22.4                                                    | This work |  |
| NiRh@NiO@SiO2                                       | 550                 | 80                    | 21.8                                                    | 1         |  |
| Rh/LaCeAlO <sub>3</sub>                             | 500                 | 100                   | 20.9                                                    | 2         |  |
| Rh-Co/CeO <sub>2</sub> -ZrO <sub>2</sub>            | 550                 | 100                   | 15.4                                                    | 3         |  |
| $Rh@Ce_{0.2}Zr_{0.8}O_2-Al_2O_3$                    | 700                 | 100                   | 21.9                                                    | 4         |  |
| Rh-Fe/CaO-Al <sub>2</sub> O <sub>3</sub>            | 600                 | 100                   | 14.4                                                    | 5         |  |
| Rh-Pt/CeO <sub>2</sub> /SiO <sub>2</sub>            | 550                 | 100                   | 17.2                                                    | 6         |  |
| 0.5RhNi/TiO <sub>2</sub>                            | 400                 | 100                   | 20.3                                                    | 7         |  |
| Rh/A                                                | 400                 | 100                   | 17.6                                                    | 8         |  |
| Rh-La <sub>2</sub> O <sub>3</sub> -SiO <sub>2</sub> | 500                 | 100                   | 11.1                                                    | 9         |  |
| Rh/CeO <sub>2</sub>                                 | 550                 | 100                   | 13.1                                                    | 10        |  |

**Table S1:** Comparison study on catalytic performance for ESR reaction over reported catalysts and this work.

| Sample                                             | Shell   | $R~(\mathring{A})^{\mathrm{a}}$ | CN <sup>b</sup> | $\sigma^2 ( \mathring{A}^2 )^c$ | $\Delta E0 \ (eV)^d$ | R factor <sup>e</sup> |
|----------------------------------------------------|---------|---------------------------------|-----------------|---------------------------------|----------------------|-----------------------|
| Rh-Ce <sub>5</sub> /Al <sub>2</sub> O <sub>3</sub> | Rh-O    | 1.7                             | 5.6             | 0.005                           | -6.75                | 0.02                  |
|                                                    | Rh-O-Ce | 2.8                             | 1.5             | 0.154                           |                      |                       |

Table 2: EXAFS fitting parameters at the Rh K-edge for Rh-Ce<sub>5</sub>/Al<sub>2</sub>O<sub>3</sub> catalyst.

<sup>a</sup>bond distance; <sup>b</sup>coordination number; <sup>c</sup>Debye-Waller factor; <sup>d</sup>the inner potential correction; <sup>e</sup>goodness of fit.

## References

- 1. Q. Xue, Z. Li, B. Yan, S. Ullah, Y. Wang and G. Luo, J. Catal. , 2024, 434, 115536.
- 2. A. H. Martínez, E. Lopez, L. E. Cadús and F. N. Agüero, Catal. Today. , 2021, 372, 59-69.
- 3. M. Araque, J. C. Vargas, Y. Zimmermann and A.-C. Roger, Int. J. Hydrogen Energy, 2011, 36, 1491-1502.
- 4. L. De Rogatis, T. Montini, M. F. Casula and P. Fornasiero, J. Alloys Compd., 2008, 451, 516-520.
- 5. L. Chen, C. K. S. Choong, Z. Zhong, L. Huang, T. P. Ang, L. Hong and J. Lin, J. Catal. , 2010, 276, 197-200.
- 6. B. Cifuentes, M. Hernández, S. Monsalve and M. Cobo, Appl. Catal. A-Gen., 2016, 523, 283-293.
- H. Meng, Y. Yang, T. Shen, W. Liu, L. Wang, P. Yin, Z. Ren, Y. Niu, B. Zhang, L. Zheng, H. Yan, J. Zhang, F.-S. Xiao, M. Wei and X. Duan, *Nat. Commun.*, 2023, 14, 3189.
- 8. P. Osorio-Vargas, C. H. Campos, R. M. Navarro, J. L. G. Fierro and P. Reyes, Appl. Catal. A-Gen., 2015, 505, 159-172.
- 9. L. Coronel, J. F. Múnera, A. M. Tarditi, M. S. Moreno and L. M. Cornaglia, *Appl. Catal. B Environ.*, 2014, 160-161, 254-266.
- 10. T. Hou, B. Yu, S. Zhang, T. Xu, D. Wang and W. Cai, *Catal. Commun.*, 2015, **58**, 137-140.