Supplementary Information

The Impact Bimetallic Ni-Fe Deposit Configuration has on Accessing Synergy during Plasma-Catalytic CO₂ Methanation

Ahmad Z. Md Azmi¹, Rachelle Tay¹, Jiajia Zhao², Christopher D. Easton³, Aaron Seeber³, Yunxia Yang², Anthony B. Murphy⁴, Emma Lovell¹, * and Jason Scott¹*

* Corresponding Authors

¹ Particles and Catalysis Research Group, School of Chemical Engineering, UNSW Kensington Sydney NSW 2052

² CSIRO Energy, 71 Normanby Road, Clayton South VIC 3168

³ CSIRO Manufacturing, Private Bag 10, Clayton, VIC 3168

⁴ CSIRO Manufacturing, PO Box 218, Lindfield NSW 2070

Table of Contents

1	Catalyst Surface Properties	4
2	H ₂ -TPR Analysis	5
3	CO ₂ -TPDs	5
4	XRD Analysis	6
5	H ₂ -TPR, CO ₂ -TPD and XRD Summary	6
6	HRTEM Analysis	8
7	XPS Analysis	.10
8	Reactor Configuration	.13
9	Thermal Activity Tests	.14
10	Plasma Activity Tests	.15
11	Calculations	.17
12	In-Situ OES Analysis	.19

List of Figures

Figure S1: BET N₂ adsorption isotherm plots of the as-prepared catalysts, neat Al₂O₃, and 10Ni, 10Fe and 10NixFe (where x = 1, 2, 3, 4, 5, 10) Al₂O₃-supported catalysts. A) WI, B) DP5 Figure S2: Complete series of H₂-TPR profiles of the as-prepared catalysts, neat Al₂O₃, and 10Ni, 10Fe and 10NixFe (where x = 1, 2, 3, 4, 5, 10) Al₂O₃-supported catalysts. A) WI, B) DP. Figure S3: CO₂-TPDs profiles of selected as-prepared catalysts, neat Al₂O₃, and 10Ni and 10NixFe (where x = 1, 3, 10) Al₂O₃-supported catalysts. A) WI, B) DP......6 Figure S4: Complete series of XRD diffractograms for the reduced and passivated catalysts, neat Al_2O_3 , and 10Ni, 10Fe and 10NixFe (where x = 1, 2, 3, 4, 5, 10) Al_2O_3 -supported catalysts. A) WI and B) DP.7 Figure S5: HRTEM micrographs of reduced and passivated 10Ni3Fe/Al₂O₃ catalysts. A) WI, B) WI, i) wide-view micrographs, ii) magnified-view of yellow-dashed highlighted region, iii-Figure S6: EDS mapping and elemental line scans of reduced and passivated 10Ni3Fe/Al₂O₃ catalysts. A) WI, B) DP; i) Fe mapping, ii) Ni mapping, iii) Ni-Fe mapping overlay, iv) Ni-Fe Figure S7: Particle size distribution of the reduced and passivated samples determined through HRTEM micrographs. A) WI, B) DP, i) 10Ni3Fe, ii) 10Ni10Fe......10

Figure S8: Ni 2p XPS spectra of selected reduced and passivated catalysts, 10Ni and 10NixFe (where x = 1, 3, 10) Al₂O₃-supported catalysts. A) WI, B) DP, i) 10Ni, ii) 10Ni1Fe, iii) 10Ni3Fe, iv) 10Ni10Fe......11 Figure S9: Fe 2p XPS spectra of the reduced and passivated catalysts. 10Fe and 10NixFe (where x = 1, 3, 10 Al₂O₃-supported catalysts. A) WI, B) DP, i) 10Fe, ii) 10Ni1Fe, iii) 10Ni3Fe, iv) Figure S10: Schematic diagram showing packed-bed DBD reactor for thermal and plasma*thermal CO*₂ *methanation*.....14 Figure S11: CO₂ conversion and CH₄ selectivity during thermal-catalytic CO₂ methanation by 10Ni, 10Fe and 10NixFe (where x = 1, 2, 3, 4, 5, 10) Al₂O₃-supported catalysts. Neat Al₂O₃ is included as a control. A) WI; B) DP, i) CO₂ conversion, ii) CH₄ selectivity, iii) CH₄ productivity......15 Figure S12: CO_2 conversion and CH_4 selectivity during plasma-catalytic CO_2 methanation by 10Ni, 10Fe and 10NixFe (where x = 1, 2, 3, 4, 5, 10) Al₂O₃-supported catalysts. Neat Al₂O₃ is included as a control. A) WI; B) DP. Operating conditions: voltage = 150 V, discharge frequency = 850 Hz, resonance frequency = 60 kHz, duty cycle = 66μ s, power ~28 W......16 Figure S13: Stability tests of the best performing catalysts (10Ni10Fe/Al₂O₃ WI and 10Ni3Fe/Al₂O₃ DP samples) and monometallic Ni catalysts for both synthesis methods over 2 hr at 150 °C in a plasma environment. Voltage = 150 V, discharge frequency = 850 Hz, resonance frequency = 60 Khz, duty cycle = 66 μ s, power = ~28 W.....16 Figure S14: In-situ OES spectra in the range of 200 nm to 430 nm for selected catalysts, 10NixFe (where x = 3, 10) Al₂O₃-supported catalysts for both WI and DP synthesis methods.

List of Tables

Table S4: H ₂ -TPR peak positions, relative H ₂ consumption, relative CO ₂ desorption and XRD
crystal phases of the as-prepared catalysts 10Ni, 10Fe and 10NixFe (where $x = 1, 3, 10$) and
neat Al ₂ O ₃ for both WI and DP. n.d. denotes not detected and n.t. denotes not tested. Relative
H ₂ consumption was normalized to 10Ni/Al ₂ O ₃ WI while relative CO ₂ desorption was
normalized to Al ₂ O ₃ WI within their respective temperature ranges
Table S5: Full XPS elemental quantification of selected reduced and passivated catalysts, neat
Al_2O_3 , 10Ni, 10Fe and 10NixFe (where x = 1, 3, 10) Al_2O_3 -supported catalysts for both WI and
DP synthesis methods
Table S6: Comparison of non-thermal plasma-assisted CO2 methanation systems of various
catalysts, summarizing reactor operating conditions (voltage, frequency, and power) and
resulting CO ₂ conversion and CH ₄ selectivity

1 Catalyst Surface Properties

Table S1: Actual metal loadings of the as-prepared catalysts, and neat Al_2O_3 , 10Ni, 10Fe and 10NixFe (where x = 1, 2, 3, 4, 5, 10) Al_2O_3 -supported catalysts via ICP-OES Analysis.

	Nominal Loading (wt.%)		WI Loading (wt.%)		DP Loading (wt.%)	
Sample	Ni	Fe	Ni	Fe	Ni	Fe
Al_2O_3	0	0	0	0	0	0
10Ni	10	0	10.6	0	9.6	0
10Ni1Fe	10	1	10.5	1.1	9.1	1.0
10Ni2Fe	10	2	9.8	1.9	9.3	1.9
10Ni3Fe	10	3	9.9	3.3	9.2	2.9
10Ni4Fe	10	4	9.5	4.3	9.5	3.9
10Ni5Fe	10	5	10.1	5.3	9.2	4.8
10Ni10Fe	10	10	8.0	7.8	8.9	9.2
$10 \text{Fe}/\text{Al}_2\text{O}_3$	0	10	0	10.5	0	9.7

Table S2: Surface properties of the as prepared catalysts, neat Al_2O_3 , and 10Ni, 10Fe and 10NixFe (where x = 1, 2, 3, 4, 5, 10) Al_2O_3 -supported catalysts via BET surface area analysis.

	WI			DP		
Sample	S_{BET} (m ² /g)	V _{pore} (cm ³ /g)	D _{pore} (nm)	$\frac{S_{BET}}{(m^2/g)}$	V _{pore} (cm ³ /g)	D _{pore} (nm)
Al_2O_3	138	0.88	25	165	0.64	15
10Ni	130	0.60	20	139	0.64	17
10Ni1Fe	128	0.58	18	158	0.68	17
10Ni2Fe	125	0.54	17	165	0.68	16
10Ni3Fe	130	0.53	16	168	0.66	16
10Ni4Fe	133	0.56	17	157	0.65	16
10Ni5Fe	139	0.54	15	133	0.60	18
10Ni10Fe	146	0.53	14	153	0.51	13
10Fe	148	0.57	16	164	0.59	14

Figure S1: BET N₂ adsorption isotherm plots of the as-prepared catalysts, neat Al₂O₃, and 10Ni, 10Fe and 10NixFe (where x = 1, 2, 3, 4, 5, 10) Al₂O₃-supported catalysts. A) WI, B) DP

2 H₂-TPR Analysis

Figure S2: Complete series of H₂-TPR profiles of the as-prepared catalysts, neat Al₂O₃, and 10Ni, 10Fe and 10NixFe (where x = 1, 2, 3, 4, 5, 10) Al₂O₃-supported catalysts. A) WI, B) DP.

Figure S3: CO_2 -TPDs profiles of selected as-prepared catalysts, neat Al_2O_3 , and 10Ni and 10NixFe (where x = 1, 3, 10) Al_2O_3 -supported catalysts. A) WI, B) DP

4 XRD Analysis

Figure S4: Complete series of XRD diffractograms for the reduced and passivated catalysts, neat Al_2O_3 , and 10Ni, 10Fe and 10NixFe (where x = 1, 2, 3, 4, 5, 10) Al_2O_3 -supported catalysts. A) WI and B) DP.

5 H₂-TPR, CO₂-TPD and XRD Summary

Table S3: H₂-TPR peak positions, relative H₂ consumption, relative CO₂ desorption and XRD Crystal phases of the as-prepared catalysts 10Ni, 10Fe and 10NixFe (where x = 1, 3, 10) and neat Al₂O₃ for both WI and DP. n.d. denotes not detected and n.t. denotes not tested. Relative H₂ consumption was normalized to 10Ni/Al₂O₃ WI while Relative CO₂ desorption was normalized to Al₂O₃ WI within their respective temperature ranges.

Sample	H_2 -TPR	Relative H ₂	Relative	Relative CO ₂	XRD Crystal
	Peak	Consumption	CO_2	Desorption	Phases
	Positions	(50-600 °C)	Desorption	(200-500 °C)	Identified
		()	(50-200 °C)	(
Al ₂ O ₃ ^{WI}	n.d.	0	1.0	1.0	n.d.
10Ni/Al ₂ O ₃ ^{WI}	221, 299,	1.0	1.9	0.9	NiO
	433				
10Ni1Fe/Al ₂ O ₃ ^{WI}	219, 314,	0.9	1.8	1.1	NiO
	460				
10Ni3Fe/Al ₂ O ₃ ^{WI}	230, 347,	1.3	2.2	1.1	NiO
	517				
10Ni10Fe/Al ₂ O ₃ WI	222, 348,	2.2	2.2	0.8	Fe_2O_3
	446				
10Fe/Al ₂ O ₃ ^{WI}	254, 389,	0.6	n.t.	n.t.	Fe_2O_3
	665				
$Al_2O_3^{DP}$	n.d.	0	3.1	1.3	n.d.
10Ni/Al ₂ O ₃ ^{DP}	226, 549	1.1	1.4	1.0	NiO
10Ni1Fe/Al ₂ O ₃ DP	227, 356,	1.0	2.1	1.2	NiO
	582				
10Ni3Fe/Al ₂ O ₃ DP	241, 355,	0.9	1.6	1.0	NiO
	562				
10Ni10Fe/Al ₂ O ₃ DP	214, 360	1.0	1.4	0.7	n.d.
$10 \text{Fe}/\text{Al}_2\text{O}_3^{\text{DP}}$	214, 339,	0.3	n.t.	n.t.	n.d.
	665				

Table S4: H₂-TPR peak positions, relative H₂ consumption, relative CO₂ desorption and XRD crystal phases of the as-prepared catalysts 10Ni, 10Fe and 10NixFe (where x = 1, 3, 10) and neat Al₂O₃ for both WI and DP. n.d. denotes not detected and n.t. denotes not tested. Relative H₂ consumption was normalized to 10Ni/Al₂O₃ WI while relative CO₂ desorption was normalized to Al₂O₃ WI within their respective temperature ranges.

~ 1					
Sample	H_2 -TPR	Relative H_2	Relative	Relative CO_2	XRD Crystal
	Peak	Consumption	CO_2	Desorption	Phases
	Positions	(50-600 °C)	Desorption	(200-500 °C)	Identified
		× /	(50-200 °C)	× /	
Al ₂ O ₃ ^{WI}	n.d.	0	1.0	1.0	n.d.
10Ni/Al ₂ O ₃ ^{WI}	221, 299,	1.0	1.9	0.9	NiO
	433				
10Ni1Fe/Al ₂ O ₃ ^{WI}	219, 314,	0.9	1.8	1.1	NiO
	460				
10Ni3Fe/Al ₂ O ₃ WI	230, 347,	1.3	2.2	1.1	NiO
	517				
10Ni10Fe/Al ₂ O ₃ ^{WI}	222, 348,	2.2	2.2	0.8	Fe ₂ O ₃
2 0	446				2 0
10Fe/Al ₂ O ₃ ^{WI}	254, 389,	0.6	n.t.	n.t.	Fe ₂ O ₃
2 0	665				2 0
$Al_2O_3^{DP}$	n.d.	0	3.1	1.3	n.d.
$10Ni/Al_2O_3^{DP}$	226, 549	1.1	1.4	1.0	NiO
10Ni1Fe/Al ₂ O ₃ DP	227, 356,	1.0	2.1	1.2	NiO
2 5	582				
10Ni3Fe/Al ₂ O ₃ DP	241, 355,	0.9	1.6	1.0	NiO
2 9	562				
10Ni10Fe/Al ₂ O ₃ DP	214, 360	1.0	1.4	0.7	n.d.
$10 \text{Fe}/\text{Al}_2\text{O}_3^{\text{DP}}$	214, 339,	0.3	n.t.	n.t.	n.d.
-	665				

6 HRTEM Analysis

Figure S5: HRTEM micrographs of reduced and passivated 10Ni3Fe/Al₂O₃ catalysts. A) WI, B) WI, i) wide-view micrographs, ii) magnified-view of yellow-dashed highlighted region, iii-v) lattice spacing analysis

Figure S6: EDS mapping and elemental line scans of reduced and passivated 10Ni3Fe/Al₂O₃ catalysts. A) WI, B) DP; i) Fe mapping, ii) Ni mapping, iii) Ni-Fe mapping overlay, iv) Ni-Fe line scans.

Figure S7: Particle size distribution of the reduced and passivated samples determined through HRTEM micrographs. A) WI, B) DP, i) 10Ni3Fe, ii) 10Ni10Fe

7 XPS Analysis

Figure S8: Ni 2p XPS spectra of selected reduced and passivated catalysts, 10Ni and 10NixFe (where x = 1, 3, 10) Al₂O₃-supported catalysts. A) WI, B) DP, i) 10Ni, ii) 10Ni1Fe, iii) 10Ni3Fe, iv) 10Ni10Fe

Figure S9: Fe 2p XPS spectra of the reduced and passivated catalysts. 10Fe and 10NixFe (where x = 1, 3, 10) Al₂O₃-supported catalysts. A) WI, B) DP, i) 10Fe, ii) 10Ni1Fe, iii) 10Ni3Fe, iv) 10Ni10Fe

Table S5: Full XPS elemental quantification of selected reduced and passivated catalysts, neat Al_2O_3 , 10Ni, 10Fe and 10NixFe (where x = 1, 3, 10) Al_2O_3 -supported catalysts for both WI and DP synthesis methods.

				Elemen	tal Atom	ic Comp	osition ((%)	
Sample	F	0	С	Cl	Si	Al	Ni	Fe	Fe/Ni
$Al_2O_3^{WI}$	0.2	55.5	8.8	0.2	0.0	35.3	0.0	0.0	-
10Ni ^{WI}	0.2	53.0	8.7	0.3	0.1	36.4	1.4	0.0	-
10Ni1Fe ^{WI}	0.2	53.7	8.4	0.2	0.4	35.7	1.2	0.1	0.1
10Ni3Fe ^{WI}	0.1	53.6	8.6	0.2	0.1	36.0	1.0	0.3	0.3
10Ni10Fe ^{WI}	0.1	55.0	8.1	0.2	2.0	33.4	0.7	0.5	0.6
10Fe ^{WI}	0.1	55.4	9.6	0.2	0.0	33.4	0.0	1.2	-
$Al_2O_3^{DP}$	0.3	56.2	8.2	0.1	0.2	35.0	0.0	0.0	-
10Ni ^{DP}	0.3	49.6	8.9	0.2	0.0	38.1	2.9	0.0	-
10Ni1Fe ^{DP}	0.2	50.6	10.2	0.2	0.0	36.5	2.0	0.3	0.2
10Ni3Fe ^{DP}	0.3	51.8	9.5	0.2	0.1	35.9	1.7	0.6	0.3
10Ni10Fe ^{DP}	0.3	52.7	10.2	0.2	0.0	33.7	1.1	1.8	1.6
10Fe ^{DP}	0.3	54.6	11.5	0.2	0.0	30.8	0.0	2.6	-

8 Reactor Configuration

Figure S10: Schematic diagram showing packed-bed DBD reactor for thermal and plasmathermal CO_2 methanation.

9 Thermal Activity Tests

Figure S11: CO₂ conversion and CH₄ selectivity during thermal-catalytic CO₂ methanation by 10Ni, 10Fe and 10NixFe (where x = 1, 2, 3, 4, 5, 10) Al₂O₃-supported catalysts. Neat Al₂O₃ is included as a control. A) WI; B) DP, i) CO₂ conversion, ii) CH₄ selectivity, iii) CH₄ productivity.

10 Plasma Activity Tests

Figure S12: CO₂ conversion and CH₄ selectivity during plasma-catalytic CO₂ methanation by 10Ni, 10Fe and 10NixFe (where x = 1, 2, 3, 4, 5, 10) Al₂O₃-supported catalysts. Neat Al₂O₃ is included as a control. A) WI; B) DP. Operating conditions: voltage = 150 V, discharge frequency = 850 Hz, resonance frequency = 60 kHz, duty cycle = 66 μ s, power ~28 W.

Figure S13: Stability tests of the best performing catalysts ($10Ni10Fe/Al_2O_3$ WI and $10Ni3Fe/Al_2O_3$ DP samples) and monometallic Ni catalysts for both synthesis methods over 2 h at 150 °C in a plasma environment. Voltage = 150 V, discharge frequency = 850 Hz, resonance frequency = 60 Khz, duty cycle = 66 µs, power = ~28 W.

Catalyst	Voltag	Frequenc	Powe	CO ₂	CH ₄	referenc
	e	У	r	Conversion	Selectivit	e
	(kV)	(Khz)	(W)	(%)	У	
					(%)	
15Ni/Ce-Zr	10-15	40-41	1–3	77	97	16
15Ni/ZSM-5	10	10	14	46.3	88	36
15Ni/Al ₂ O ₃	10	55	15-18	60	97	27
15Co/ Al ₂ O ₃	14.6	23.5	2.4	44.6	90	37
15Ni/CeO ₂	n.s.	7.5–7.7	45	86	86	38
NiFe _{0.1} /(Mg,Al)O _x -800	9	n.s.	14	84.7	100	23
Ni ₁₃ Co ₂ /CaCO ₃	10.8	20	27.8	57.5	92.4	39
NiCo ₁ /CeO ₂ -I	10	7.7	9.9	60	80	40
Ru _{0.5} RH _{0.5} /Al ₂ O ₃	1-40	20-60	n.s.	97	95	41

Table S6: Comparison of non-thermal plasma-assisted CO₂ methanation systems of various catalysts, summarizing reactor operating conditions (voltage, frequency, and power) and resulting CO₂ conversion and CH₄ selectivity.

11 Calculations

Gas flow rates were determined using an internal standard (IS) normalization method. Since the N₂ flow rate was fixed at 10 mL/min, its measured GC peak area was used to correct for variations in injection volume and detector response. The peak areas of all other components (i.e., H₂, CO₂, CO and CH₄) were scaled accordingly based on this reference. The scaling factor was first calculated:

$$SF = \frac{A_{known\,IS}}{A_{measured\,IS}}$$

Where,

SF	= Scaling Factor
IS	= internal standard / N_2
$A_{known IS}$	= known area for IS
Ameasured IS	= measured area for IS

The measured areas for the other gas components were scaled using the calculated scaling factor:

$$A_{GC, scaled} = S \times A_{GC,measured}$$

Where,

SF = Scaling Factor

 $A_{GC,scaled}$ = scaled area of gas component

 $A_{GC,measured}$ = measured area of gas component

The gas component flowrates were then calculated using a linear calibration curve of that gas component flowrate vs area.

$$F_{GC} = \frac{A_{GC,scaled}}{CC}$$

Where,

 F_{GC} = volumetric flowrate of gas component

 $A_{GC,scaled}$ = scaled area of gas component

CC = calibration constant

The calculated flowrates for CO_2 , CH_4 and CO were then used to calculate the CO_2 conversion, CH_4 selectivity and CH_4 producitvity.

$$CO_2 conversion (\%) = \frac{CO_{2 in} - CO_{2 out}}{CO_{2 in}} \times 100\%$$

Where,

 $CO_{2 in}$ = volumetric flowrate of CO_2 input

 $CO_{2 out}$ = volumetric flowrate of CO_2 output

$$CH_{4} selectivity (\%) = \frac{CH_{4 out}}{CH_{4 out} + CO_{out}} \times 100\%$$

Where,

 $CH_{4 out}$ = volumetric flowrate of CH_4 out

CO _{out} = volumetric flowrate of CO output

$$CH_4 \ productivity\left(\frac{mmol}{ghr}\right) = \frac{CO_2 \ conversion \ \times CH_4 \ Selectivity \ \times \ F_{in} \ \times \ 60}{V_m \ \times \ m_{cat}} \ \times \ 100\%$$

Where,

F_{in}	= total reactant volumetric flowrate
60	= unit correction for min to hr
V_m	= molar volume of gas at STD
m _{cat}	= mass catalyst

12 In-Situ OES Analysis

Figure S14: In-situ OES spectra in the range of 200 nm to 430 nm for selected catalysts, 10NixFe (where x = 3, 10) Al₂O₃-supported catalysts for both WI and DP synthesis methods. Glass beads were included as a control.