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Fig. S1. Schematic representation of (a) side view of forced-flow cell and (b)
experimental conditions.



Time-zero analysis

The standard three-electrode electrochemical cell struggles to measure OER activity
accurately due to catalyst shedding and oxygen bubble formation. To address these issues,
recent advancements have developed evaluation cells that secure the catalyst and control
oxygen coverage by forcing electrolyte flow. This study introduced a new
electrochemical measurement method, the "time-zero method," using a forced-flow cell
(Fig. S2). This method determines catalytic activity by extrapolating from the initial time
of bubble generation, providing kinetic current values under stable supersaturation and
bubble-free conditions on the catalyst surface. By analyzing the 50-100 ms time region
to eliminate the effect of double-layer charging current, a more accurate measurement of
the true OER performance of the BSCF catalysts was achieved.

From this method, the decline in current due to bubbles generated on the catalyst layer
is accounted for as a change in the diffusion-dominant current. The Koutecky—Levich
equation, which models the measured electric current at an electrode from an
electrochemical reaction in relation to the kinetic activity and the mass transport of

reactants, is utilized as shown in the equation below.
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In this case, Cottrell equation could be applied to obtain the mass transfer current

density, as a function of time i,,(¢), as shown in equation, in which n, F, D and C are the

reaction electron number, Faraday constant, diffusion coefficient, and concentration,

respectively.
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Thus, the reciprocal of the current density i can be transformed into followed equation.



nFCD?
The inverse number of measured current 1/i is linear to 72, and when time is 0, the

predicted measured current is theoretically the same to the kinetic current.
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Fig. S2. (a) Pulsed potential step measurements. (b) Determination of extrapolation

region.

The current change during the constant potential measurement could be divided
in three parts. The first one is the charging of the electric double layer on the surface of

catalysts, the second one is the generation of dissolved oxygen and formation of



supersaturated layer in the electrolyte close to the surface of catalysts, and the third one
is mass-transportation limitation due to the growth of oxygen bubbles. The third process
was analyzed according to the Cottrell equation. The boundary of the second and the third
parts is found as the point of larges curvature in the i!-7'? curve. The point is also found
as an inflection point in the first-order differential of the curve. It is mathematically well-
known that the inflection point is found as the point in which the second-order differential
value is minimum (It is equal to the point in which the third-order differential value is

zero) in Fig. S2. The Y axis of 1/i(0oms) is aiming to easily compare the i-!-t'/2 curves in
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Fig. S3. (a) Sectional view, (b) practicality images and (c¢) decomposition chart of

operando soft XAS cell. (d) operando XAS measurement procedure.
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Fig. S4. (a) XRD patterns of Bay 5sSr;sCosFe; 03.5(X=0, 0.2, 0.5, 0.8, 0.9, 0.95, 1.0).



Fig. S5. SEM images of (a) BSC, (b) BSCF5582, (c) BSCF5528, and (d) BSF.
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Fig. S6. EDS spectra of BSCF5582 powder.
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Fig. S7. Nitrogen adsorption/desorption isotherm patterns of (a) BSCF5528, (b)

BSCF5582, (c) BSC, and (d) BSF
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(b) Co and (c) Fe K-edge XANES.
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Fig. S10. O K-edge XAS spectra of BSCF5528 and BSCF5582.

12



(@) s

Raw data BSCF5582
3.0 L:_ttic_e 0% O1s
0*/0
25 OH/0,
3 Background
_lf 2.0 Fitting data
oy
@ 15
2
£ 10
0.5
i ”
0.0 ) ) : r—
534 532 530 528 526

Binding Energy / eV

Intensity / a.u.

Raw data BSCF5528
Lattice 0% 01s
25 oxo-
OHID,
2.0 Background
Fitting data
1.5
1.0
0.5
0.0 : : : :
534 532 530 528 526

Binding Energy / eV

Fig. S11. XPS spectra of O 1s for (a) BSCF5582 and (b) BSCF5528.
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Fig. S12. Pre-treatment and activation of BSCF5582, BSCF5528, BSC and BSF by

chronopotentiometry (CP) at 400 mA c¢cm recorded with forced flow cell.
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Fig. S13. EDS spectra of BSCF5582 after pre-treatment.
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Fig. S16A. The anode potential corresponding to current density of 100mA c¢cm? vs. ADT
cycles of BSCF5528 and BSCF5582.

Electrochemical Surface Area (ECSA):

The ECSA is a critical parameter for evaluating catalyst performance as it is directly related to the
number of available active sites. In this study, ECSA was determined based on the double-layer
capacitance (Cy). Cyclic voltammetry (CV) measurements were conducted within the non-faradaic
potential window (1 to 1.05 V vs. RHE) in 0.1 M KOH, at scan rates ranging from 20 to 120 mV s™'.
The average current density (Ia+Ic)/2 @ 1.025 V was plotted against the scan rate, and the slope of
the resulting linear fit was taken as Cy. To calculate the ECSA, the obtained Cy value was divided by

18



the specific capacitance (C;) of a flat surface, assumed to be 40 uF cm™ in this work, consistent with

values reported in the literature (typically between 20-60 pF cm2).3
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Fig. S19. (a) Co K-edge and (c) Fe K-edge of BSCF5582 during operando measurement.

Fitted average oxidation states of (b) Co and (d) Fe.
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Fig. S23. (a) operando Co L;-edge XANES spectra at 1.9 V vs. RHE of BSCF5528,
BSCF5582, BSC, Co304, CoO and CoOOH. (b) operando Fe L;-edge XANES spectra at
1.9 V vs. RHE of BSCF5528, BSCF5582, BSC, Fe;0,4, and FeOOH.
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Fig. S24. Co Ls-edge XAS spectra of EuCoQOj3 (LS-Co**), and Sr,CoO;C1 (HS-Co*") from

Hu et al.!

26



(a) ——BSCF5582_0.8V Co L,edge (b! 55 BSCF 5582
5 | ——BscFsss2_1.9v - e
5 CoOOH ®
—~ | ——LicoO B @
2 : ‘ Ba M-edge 1.50
£ ®
c A
2 <
E =, 145 ®
> = o
[F]
N
2 1.40 L )
g °
@
=z
1.35 .

0.8 1.0 1.2 14 16 1.8 2.0
Potential / V vs. RHE

778 780 782 784 786 788
Energy/ eV

Fig. S25. (a) Co L;-edge XAS spectra of BSCF5582 and (b) Corresponding peak intensity

ratio between I and I, in p(E).

(a) = BSCF5528 (b)
© Co K-edge 2.88F
iy
>
=
m =
@ §2.84
98 @ — ——.’.
= S 2380 o’
> 2, L
2 A - — =¥
8 o
N
™ 2.76}
E
.
=}
=2 r r r 2722 . . . . . .
7718 7720 7722 7724 08 10 12 14 16 18 2.0
Photon energy / eV Potential / V vs. RHE
(c) =- BSCF5528 (d)
E Fe K-edge 3.08¢
>
=
m 3
c|=.) §3.04 .
15 & o— —
= > 3.00} /
2 ®
S - o — -9 4
© 296}
E
.
=}
z . . p-7) N
7122 7124 27 0.8 10 1.2 14 16 18 20

Photon energy / eV Potential / V vs. RHE



Fig. S26. (a) Co K-edge and (c) Fe K-edge of BSCF5528 during operando measurement.

Fitted average oxidation states of (b) Co and (d) Fe.
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Fig. S28. Normalized operando O K-edge intensity growth with applied potential for (a)
BSC, (b) BSCF5582, (¢) BSCF5528 and (d) BSF.
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Fig. S29. O 1s XPS spectra of (a) BSCF5582 and (b) BSCF5528 before and after OER.
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Table S1. Summarizing the abbreviations and their full forms used throughout the

manuscript.
Abbreviation Full Form
BSCF Bay 5Srg sCo,Fe; 4Oss
BSC Bay 5Sr) sCo0O5.5
BSF Bay 5Srg sFeOs_5
BSCF5582 Bay 5Sr¢.5C00.5F€0.203-5
BSCF5528 Bay 5S195C00.2F€0303.5
OER Oxygen Evolution Reaction
XAS X-ray Absorption Spectroscopy
TEY Total Electron Yield
RDE Rotating Disk Electrode
EDS Energy-dispersive X-ray Spectroscopy
XPS X-ray Photoelectron Spectroscopy
XRD X-ray Diffraction
BET Brunauer—-Emmett—Teller
TEM Transmission Electron Microscopy
EXAFS Extended X-ray Absorption Fine Structure
XANES X-ray Absorption Near Edge Structure
LSV Linear Sweep Voltammetry
Cv Cyclic Voltammetry
CA Chronoamperometry
Cp Chronopotentiometry
EIS Electrochemical Impedance Spectroscopy
Oh Octahedral Coordination
Td Tetrahedral Coordination
HS High Spin
LS Low Spin
u-OH Double Metal-coordinated Hydroxide Bridging Oxygen Sites
n3/4-O Threefold or Fourfold Metal-coordinated Oxygen Sites
BWNA Bulk Water Nucleophilic Attack
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Table S2A. Overpotential comparison of various perovskite electrocatalysts for OER at

a current density of 10 mA cm 2.

Catalyst

PrBay 5S1¢.5Co01 5Fe 505:5

Biy.1(Bag 5810 5)0.9C00 8F€203.5

Sr(Cog.sFeo.2)0.7B0303-5

LaFeoAzNi0.303

Bayg oSt 1Cog sFeq 1119 10325

Bay 551 5Cog 3-xFeg 2NicO3.5

hexagonal

Bay 551y sCog sFep 2035

hexagonal

BaySry(Cog gFe2)4015

high-valence hybrid

Bay 35519 65C00 8Fe 2035

Electrolyte

1.0 M KOH

0.1 M KOH

0.1 M KOH

1.0 M KOH

0.1 M KOH

0.1 M KOH

0.1 M KOH

0.1 M KOH

0.1 M KOH

32

Overpotential/ mV

=390

370

340

302

300

278

360

340

260

Ref.

Adv. Funct. Mater.
2019, 29, 1901783

Sci. Rep. 2019, 9,
4210

Adv. Energy Mater.
2019, 9, 1900429

Angew. Chem., Int.
Ed. 2019, 58, 2316

ACS Appl. Energy
Mater. 2020, 3,
7149

Small 2021, 17,
2006638

Inorg. Chem. Front.,
2020,7, 4488-4497

Adv. Mater. 2020,
32, 1905025

Nat. Commun. 2020,
11,3376



Catalyst

Bay 5519 5(Cog.3Fe).2)0.903-3

Bay 550.5C0¢ sFeg ,03-5 mix

Gdy»Cep301 9

2H-type B, xS1xCo03-

Pry.5S105C00 3F€0203-5

Bao.Ssro_5C00.gFeo.20375 mix

CeOz

Ca3C0409-

Bay 5Sr( 5Coq sFep 03

RllOz

II‘OZ

Electrolyte

0.1 M KOH

0.1 M KOH

0.1 M KOH

0.1 M KOH

0.1 M KOH

0.1 M KOH

0.1 M KOH

0.1 M KOH

33

Overpotential/mV

290

400

395

320

290

389

465

366

Ref.

Nano Energy 2022,
99, 107344,

Inorg. Chem. 2023,
62,10, 43734384

Energy Fuels 2022,
36, 6,3219-3228

ACS Appl. Energy
Mater. 2023, 6, 11,
6289-6298

Green Chem.,

2024,26, 9433-9444

J Solid State
Electrochem 2024,
28, 3883-3891

ACS App!l. Energy
Mater. 2019, 2, 6,
4075-4083

ChemkElectroChem
2022, 9,
€202200246.



Catalyst Electrolyte = Overpotential/mV Ref.

Nat. Commun. 2020,
11,3376

Ba0.58r0_5C00‘8Fe0'203_5 0.1 M KOH 390

Table S2B. Comparisons of Key Mechanistic Insight and techniques used for various

perovskite electrocatalysts for OER.

Catalyst
Key Mechanistic Insight Techniques Used Reference
Composition
self-optimizing OER
mechanism on hybrid BSCF
high-valence hybrid hard XAS, and Nat. Commun.
evoked by pre-leaching of BaCl,
Bay 35S10,65C00 8F €0 20325 and soft XAS 2020, /17,3376
SrCl, during OER.
Tetrahedral Co ions and Adv. Mater.
hexagonal Combined ex-situ XAS
octahedral O ions on the surface 2020, 32,
Ba4sr4(C00AgFeoA2)4ol5 and DFT studies
are active sites 1905025
dynamic self-reconstruction of the Nat. Mater
Bag35S10.65C00 sFe0205.5 materials to form a metal Operando hard XAS 2017,16, 925
oxy(hydroxide) active layer. 931.
TEM-based
Co 2" /Fe** spinel-like surface J. Am. Chem.
imaging/diffraction and
Bay35Srg45C0ogsFeg 2035  promotes the formation of the Soc. 2020, 142,
electron energy-loss
highly active Co(Fe)OOHphase 15876—15883
spectroscopy (EELS)
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Catalyst

. Key Mechanistic Insight Techniques Used Reference
Composition
J. Mater.
High Fe-content stabilizes the Chem. A,
Bayg 35810.65C00.8F€0.203.5

surface Co?"-atoms limiting the HARD XAS

2024,12, 5156-
reconstruction process.

5169
J. Mater.
Correlation between B-site doping
PrBa, St sCo,—Fe,Os.s EX-Situ hard XAS Chem. A,
and OER performance
2022,10,2271-
2279
Adv. Funct.
Effects of oxygen vacancies on
PrBay sSry sCo sFep sOs.5 XPS, DFT and STM Mater. 2019,
the OER activity
29,1901783
A low-level dopant Ir increases
ACS Appl.
the B-O and reduces cobalt
BaO'QSI'O.]COO'gFCO.111'0'103_5 XPS, and DFT Energy Mater.
valence that enhances OER
2020, 3, 7149
activity
gadolinium-doped ceria oxide
Inorg. Chem.
Bag 5S,05C003Fep203-5 suppresses the segregation and XPS, Raman, MD
2023, 62, 10,
mix Gdy,Cep30; 9 dissolution of A-site elements in simulation
4373-4384
BSCF and increases stability
At lower Fe conc. Fe occupies  Ex-situ/operando hard Co
Bao.Sro.<CoxFer 0.8 octahedral sites, push Co to and Fe- K edge and Co/Fe This work

tetrahedral sites, encouraging the L-edge and O K-edge X-

formation of the active CoOOH ray absorption
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Catalyst
Key Mechanistic Insight Techniques Used Reference
Composition

phase. Higher Fe concentrations spectroscopy (XAS)
stabilize Co*" in octahedral sites,
leading to FeOOH formation but

lower activity

Table S3. BET specific surface area of each sample.

Sample agger (M? g1)
Baj 5Sr; sC0o0O4_;5 0.72
Bay 5519 5C00 sF€0203.5 0.45
Bay 5S195C00.5Fe 5035 0.49
Bay 5S195C00.2Fe 5035 0.49
Bag 5Srg sFeOs5_5 0.56

Note 1. EXAFS fitting detail

1. Reference Spectra and Model Construction
First, Sy> was obtained by fitting the FT-EXAFS spectra of a Co/Fe-metal reference

sample (N=12) and fixed to 0.8. The following CIF files were used to generate the fitting
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models (ICSD codes are provided in parentheses): CoOOH (22285), Co;04 (27497), and
FeOOH (239322). The unit cell parameters of the reference models are as follows:
CoOOH: R3™m, a=b=2.88 A, c=13.04 A

Co;304: Fd3™m, a=b=c=8.056 A

FeOOH: Pnma, a =3.06 A, b=4.64 A, c=10.06 A

We first performed fits on the spectra of these reference compounds, as shown in Fig.
S30 and Table S4.

For CoOOH and FeOOH, the k-range was [3.0, 14.0] A-! and the R-range was [1.0, 3.0]
A.

For Co30y, the k-range was [3.0, 14.0] A and the R-range was [1.0, 3.2] A.

For the k3-weighted y(k) curve used in fitting, the number of independent points (Nip)

was calculated using:?

2Ak X AR
s

In the FT curves of CoOOH and FeOOH (Nj, =11.5), two peaks were observed near 1.5
A and 2.5 A, corresponding to Co/Fe-O and Co/Fe-Co/Fe(Oh) paths. A two-shell
structural model incorporating these scattering paths was used for fitting. The Debye-
Waller factors (62), coordination numbers (CN), interatomic distances (AR), and energy
shifts (AE,) were set as free parameters. The number of adjustable parameters (N ) Was
within this limit.

For Co30y, three peaks were observed near 1.5 A, 2.5 A, and 3.5 A, corresponding to Co-
O, Co-Co(Oh), and Co-Co(Td) paths. Since Nyua=12=Ni,=12.6, a shell-by-shell fitting
strategy was adopted. First, the Co-O scattering path within the R-range [1.0, 2.0] A was
fitted (Nparaay <Nipys.7)). After obtaining ideal fitting results, the R-range was expanded

to [1.0, 3.2] A, fixing the Co-O scattering path parameters and simultaneously fitting Co-
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Co(Oh) and Co-Co(Td) paths (Nparag) <Nip12.6)). This adjustment strategy can also
involve fixing the CN or AR parameters of the Co-Co(Oh) or Co-Co(7d) paths, allowing
fine-tuning of the Co-O scattering path to achieve the optimal fit.

The fitting results confirmed that the CIF files used for CoOOH (22285), Co;04 (27497),
and FeOOH (239322) matched well with the reference spectra and could be further
applied to the operando analysis of BSCF samples.

2. Fitting Strategy

Operando Co K-edge:

During operando measurements, BSCF5582 undergoes a structural transition from
Co(7Td) to Co(Oh) (Fig. S31 and Table S5). A three-shell model incorporating Co-O, Co-
Co(Oh), and Co-Co(7d) paths was used for fitting. Due to high noise levels at large k-
values, the k-range was reduced to [3.0, 10.0] A-!, and the R-range was set to [1.0, 3.0]
A, resulting in N ip=8.9. Using a shell-by-shell fitting strategy, the Co-O path was first
fitted (Nparasy <Nipy(s.4)) and fixed, followed by fitting Co-Co(Oh) and Co-Co(Td) paths
(Nparagy <Nipi8.9))-

For BSCF5528, the k-range was [3.0, 11.0] A-! and the R-range was [1.0, 3.0] A, yielding
Ni,=10.2. No significant Co(7d) signal was observed, and most Co ions remained in Oh
sites. Including the Co-Co(7d) path in the model resulted in poor fitting quality and high
DW factors. Therefore, this path was excluded in the revised analysis (Npara@) <<Nipt(10.2)),
resulting in high-quality fits (Fig. S32 and Table S6).

Operando Fe K-edge

For Fe K-edge EXAFS fitting, both samples incorporated Fe-O and Fe-Fe(O#h) paths from
FeOOH. The k-range was [3.0, 10.0] A-! and the R-range was [1.0, 3.0] A, with N;,=8.9.

Both shell-by-shell and multi-shell fitting strategies yielded consistent results, meeting
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the independent points constraint (Nparag) <Nipy(s.9))-

3. Discussion

In Table S5 and S6, the coordination number of Co-O (CN¢, o) for both BSCF5528 and
BSCF5582 increase with applied potential, indicating the development of additional Co—
O coordination in Co-O(OH) species during the OER process. The changes in CNc¢,_co
values reflect the formation and evolution of Co—Co coordination shells. The two Co—Co
peaks observed at approximately 2.87-2.89 A and 2.96-2.99 A correspond to Co-Co(Oh)
and Co-Co(7d) coordination, denoted as CNgy, and CNry, respectively. In BSCF5582, the
growth of Co-O(OH) species during anodic polarization leads to an increase in CNgy, and
a decrease in CNpy. The elongation of the Fe-O bond length from 1.92 to 2.01 A is
attributed to the formation of Fe-OH intermediates, while the increase in Fe-Fe(Oh)
distance from 2.94 to 3.01 A indicates a transition from Fe;O, to FeEOOH configuration.
In contrast, BSCF5528 shows decreasing in the coordination numbers of Co-Co(Oh)
during anodic polarization. Additionally, the shortening of the Fe-Fe(Oh) bond length
from 3.11 to 3.00 A suggests a partial transition of Fe3* from Td to Oh sites, associated

with the formation of FeOOH as the primary active site.

Table S4. The corresponding R space curve fitting results of Co and Fe K-edge for

CoOOH, Co0304 and FeOOH.

R
2 2 AE (eV

Shell CN R (A) o ) o (€V) factor
Co-O 6.32) 1.893)  0.003(1) 2(1)

CoOOH 0.012
Co-Co(Oh)  6.3(4)  2.84(5)  0.005(2) 1(1)
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Co-0 4509)  1.90(5)  0.003(1) 4(1)
Cos0;  Co-Co(Oh) 7.9(8) 2.87(4)  0.007(3) 4(1) 0.004
Co-Co(Td) 2.53) 3.03(6)  0.001(1) 11(5)
Fe-O 76(10)  1.952)  0.010(3) -4(3)
FeOOH 0.009
Fe-Fe(Oh)  2.7(5)  3.01(1)  0.003(1) 6(2)
(a) (b) (c)

——CoDOH

Co K-edge

——Fit
Co-Co(0Oh)
Co-0

FT [k (x(k))] (A

FT [k (k)] (A

——FeOOH
——Fit

Fe-0  Fe-Fe(Oh)

Fe K-edge

FT [K*(c(k))] (A%

——Co,0,
—Fit

Co-0

Co-Co(Oh)

Co-Co(Td)

Co K-edge

0 2 r
R (A)

2
R(A)

4

2

R(A)

4

Fig. S30. Co and Fe K-edge EXAFS fitting curves in R-space of (a) CoOOH, (b)
FeOOH, and (c) Co30,.

Table S5. The corresponding R space curve fitting results of Co and Fe K-edge for the

BSCF5582 catalysts varying different potential.

BSCF5582  Shell CN R (A) o (X)) AE (eV) R
factor
Co-0 34(3)  1.89(5)  0.008(2) 1(1)
08V  Co-Co(Oh) 5.7(7) 2.90(1)  0.003(2) 12(5) 0.009
Co-Co(Td) 8.1(5) 3.01(2)  0.004(1) 7(2)
Co-0 4.1(4)  1.86(6)  0.006(1) -6(2)
1.9V 0.004
Co-Co(Oh) 62(2) 2.87(4)  0.003(2) 3(2)
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Co-Co(Td) 3.9(6) 2.98(3)  0.001(1) -11(3)

Fe-O 3.9(4)  1.92(6)  0.004(2) 7(2)
0.8V 0.001
Fe-Fe(Oh) 0.7(3) 2.94(3)  0.004(2) -6(3)

Fe-O 3.8(5)  2.01(8)  0.006(3) 6 (1)
1.9V 0.016
Fe-Fe(Oh) 2.509) 3.01(7)  0.010(3) 9(5)

(a) BSCF5582@0.8 V Co K-edge Co K-edge
it

~——— BSCF5582@0.8V
——Fit

Ki(K) 1 A®
| %
a
®
®
FT [k (x (k)] (A*)

o
)

4
Wavenumber / A" R (A)

Co K-edge
BSCF5582@1.9V Co K-edgd
——Fit

—— BSCF5582@0.8 V
—Fit

Ky (K) 1 A®
FT [k (z(k)] (A*)

0 2 4 6 8 10 z 4
R(A)
Wavenumber / A1
(b) BSCF5582@0.8 V Fe K-edgef —— BSCF5582@0.8 V Fe K-edge
——Fit ——Fit

Kx(K) I A®
FT [K*(x(k)] (A)

N

2 4 6 8 10 H 4
Wavenumber / A R(A)
BSCF5582@1.9 V Fe K-edge; ——BSCF5582@1.9 V Fe K-edge

——Fit —Fit
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Fig. S31. Co and Fe K-edge EXAFS fitting curves in R-space and K-space for BSCF5582.
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Table S6. The corresponding R space curve fitting results of Co and Fe K-edge for the

BSCF5528 catalysts varying different potentials.

BSCF5528  Shell CN  R@A) @A) AE (V) R

factor
Co-O 372 1938)  0.007(3) 6(3)

0.8V 0.019
Co-Co(Oh)  9.2(5)  2.87(5)  0.010(5) -3(2)
Co-O  40(3) 1945  0.003(2) 6(3)

19V 0.014
Co-Co(Oh)  6.6(9)  2.88(3)  0.009(4) -2(1)
Fe-O  21(7) 1.934)  0.003(1) -6(2)

0.8V 0.014
Fe-Fe(Oh)  1.5(7)  3.11(7)  0.006(1) -2(1)
Fe-O  283) 201(2)  0.0053) 1(1)

19V 0.001
Fe-Fe(Oh) 355  3.008)  0.011(2) -3(1)
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Fig. S32. Co and Fe K-edge EXAFS fitting curves in R-space and K-space for

BSCF5528.
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