Electronic Supplementary Information

Methane and nitrogen oxides abatement from marine exhaust gases: A review on available plasma-catalytic systems

*¹Evangelos Delikonstantis, ¹Stavros. A. Theofanidis, ¹Andy N. Antzaras, ¹Amvrosios G. Georgiadis,
 ¹Vasileia-Loukia Yfanti, ²Seyedeh Behnaz Varandili, ²Juan. Mario Michan, ^{*2}William J. Ramsay

¹ AristEng S.à r.l., 77, rue de Merl, L-2146 Luxembourg City, Luxembourg

² Daphne Technology SA, 7, Chemin de la Venoge, Rez de chaussée, 1025 Saint Sulpice, Vaud, Switzerland

*Corresponding authors:

E. Delikonstantis: AristEng S.à r.l., 77, Rue de Merl, L-2146, Luxembourg City, Luxembourg. e-mail: <u>evangelos.delikonstantis@aristeng.lu</u>

W.J. Ramsay: Daphne Technology, Environmental Services Saint-Sulpice, Vaud. e-mail: <u>William.Ramsay@daphnetech.com</u>

Conf. ¹	Feed composition	Plasma Technology	CH₄ conv. (%)	SEI (J∙mL⁻¹)	Comments	Ref.
р	0.5% CH₄ – 10% O₂ – 5.5% CO₂ – 7% H₂O – balance N₂	AC high voltage power supply (PVM500) and a nanosecond pulse generator (Megaimpulse Ltd. NPG- 18/3500). Plasma tests: frequency = 20 kHz, voltage = 5-12 kV.	~59 ~95%	1.8 4	Reactor: Al ₂ O ₃ tube (99.7%), OD=6 mm, ID=4 mm. The plasma reactor was in the traditional DBD cylindrical configuration. F = 100 ml·min⁻¹ Negligible solid carbon deposition. Increasing SEI → CO ₂ yield increases & CO yield decreases	27
IPC	0.5% CH ₄ − 10% O₂ − 5.5% CO₂ − 7% H₂O − balance N₂	≠≠	~25% ~60%	4 6	Reactor: Al ₂ O ₃ tube (99.7%), OD=6 mm, ID=4 mm. The plasma reactor was in the traditional DBD cylindrical configuration. Negligible solid carbon deposition Catalyst: 2wt% Pd/Al ₂ O ₃ (Johnson Matthey)	27
Р	0.5% CH ₄ − 10% O ₂ − 5.5% CO ₂ − 7% H ₂ O − balance N ₂	Nano-pulsed generated plasma Plasma tests: frequency = 20 kHz, voltage = 5-12 kV.	~95%	~2	Reactor consisted of an Al_2O_3 tube (99.7% purity, 6 mm OD – 4 mm ID). Increasing SEI \rightarrow CO ₂ yield increases & CO yield decreases	27
IPC	0.5% CH ₄ − 10% O ₂ − 5.5% CO ₂ − 7% H ₂ O − balance N ₂	≠≠	~95%	~1.3	Reactor consisted of an AI_2O_3 tube (99.7% purity, 6 mm OD – 4 mm ID). Increasing SEI \rightarrow CO ₂ yield increases & CO yield decreases	27
Р	0.3% CH . – 4.0% CO.	DBD - electrodes were connected to a high voltage monopolar	49%	1.8	Space velocities = 30400 h ⁻¹ T = 200°C, P = 12.2 W, Fin = 400 mL·min ⁻¹ Plasma only configuration \rightarrow CO production	
РРС	-2% H ₂ O $-$ balance air	pulse generator (40 kV, 1.5 kW, A2E Technologies-Enertronic.	44%	1.8	PPC configuration \rightarrow CO ₂ production due to oxidation of CO	26
IPC		requency of the voltage pulse in the range of 100–500 Hz.	27%	1.8	Catalyst: 0.15wt% Pd/alumina 15wt% wash-coated monolith of cordierite (Mg ₂ Al ₄ Si ₅ O ₁₈)	

Table S1: CH₄ conversion (%) and SEI (J·mL⁻¹) for low content (up to 1 vol%) CH₄ feedstocks over different plasma reactor configurations

Conf. ¹	Feed composition	Plasma Technology	CH₄ conv. (%)	SEI (J∙mL⁻¹)	Comments	Ref.
Р		DBD - electrodes were connected to	~33%	1.5	Space velocity = 30400 h ⁻¹ T = 200°C, P = 12.2 W, Fin = 400 mL·min⁻¹	
PPC	1.0% CH₄ – 4.0% CO ₂ – 2% H ₂ O – balance air	generator (40 kV, 1.5 kW, A2E Technologies-Enertronic.	33%	1.8	Plasma only configuration \rightarrow CO production PPC configuration \rightarrow CO ₂ production due to oxidation of	26
IPC		Frequency of the voltage pulse in the range of 100–500 Hz.	20%	1.8	CO Catalyst: 0.15wt% Pd/alumina 15wt% wash-coated monolith of cordierite (Mg ₂ Al ₄ Si ₅ O ₁₈)	
Р	0.15% CH₄ – 4.0% CO ₂ – 2% H ₂ O – balance air	≠≠	38	1.8	Space velocity = 45500 h ⁻¹ T = 200°C, P = 12.2 W, Fin = 600 mL·min⁻¹	26
Р	1000 ppm CH ₄ – balance air	DBD cylindrical configuration	5 (T = 200°C) 30 (T = 300°C) ~65 (T = 400°C)	0.148	Discharge volume = 18 cm ³ Reactor was heated up at constant SEI = 148 J/L _{feed}	29
IPC	1000 ppm CH₄ – balance air	≠≠	5 (T = 200°C) 42.5 (T = 300°C) ~95 (T = 400°C)	0.148	Discharge volume = 18 cm ³ Catalyst mass = 2.1 or 3.1 g Reactor was heated up at constant SEI = 148 J/L _{feed} Catalyst: 0.5 and 1.0 wt% Pd/Al ₂ O ₃	29
РРС	1000 ppm CH₄ – balance air	<i>≠≠</i>	5 (T = 200°C) 40 (T = 300°C) ~95 (T = 400°C)	0.148	<i>≠≠</i>	29
Р	500 ppm CH₄ – 21% O ₂ – balance N ₂	DBD powered by RF unit	68 72 81 90	8 12 16 20	Feed composition: 500 ppm CH_4 , 21% O_2 - balance N_2 .	30
			100	24		

Conf.1	Feed composition	Plasma Technology	CH₄ conv. (%)	SEI (J·mL⁻¹)	Comments	Ref.
			78	8		
	500 mmm C U 210/		85	12		
IPC	$O_2 - balance N_2$	≠≠	90	16	Feed composition: 500 ppm CH_4 , 21% O_2 - balance N_2 .	30
			95	20		
			100	24		
IPC	0.36% CH₄ – 3% O ₂ – balance N ₂	The plasma was ignited with a surfatron device connected to a MW power supply. A MW power of 75 W was used and the pressure of the gases was maintained at 4 Torr. Estimated energy density=10 W·cm ⁻³	~100%	_	Treatment at Room Temperature Pressure = 450-530 Pa Catalyst: Perovskite La _{0.5} Sr _{0.5} CoO _{3-d} or SiO ₂ (100 mg) <u>Selectivity towards CO₂ ~ 10%</u>	35
IPC	0.36% CH₄ – 3% O ₂ – balance <u>Ar</u>	<i>≠</i> ≠	~100%	_	Treatment at Room Temperature Pressure = 450-530 Pa Catalyst: Perovskite La _{0.5} Sr _{0.5} CoO _{3-d} or SiO ₂ (100 mg) <u>Selectivity towards CO₂ ~ 40%</u>	35
IPC	0.36% CH₄ – 3% O₂ – balance N₂	<i>≠</i> ≠	~100%	_	Treatment at 190°CCatalyst: Perovskite $La_{0.5}Sr_{0.5}COO_{3-d}$ (100 mg)Pressure = 450-530 PaSelectivity towards $CO_2 \sim 90\%$ The use of SiO2 achieved CO_2 selectivity up to 10% &45% when N2 and Ar were used as carrier respectively	34, 35
Р	0.25% CH₄ – 2.5% O ₂	DBD reaction system: length of discharge zone=200 mm, gap=5 mm, reaction volume=2.5 cm ³ . Experimental conditions: waveform	~6 ~18	0.032 (2 kV _{p-p}) 0.092 (3 kV _{p-n})	Fin = 200 mL·min⁻¹ Space velocity = 24000 h ⁻¹	28
Р	-balance He	(sinusoid) and driving frequency (4 kHz) with varying voltage amplitude from 2 to 4 kV _{p-p} with 1 kV step.	~32	0.165 (4 kV _{p-p})	Room temperature	

Conf.1	Feed composition	Plasma Technology	CH₄ conv. (%)	SEI (J∙mL⁻¹)	Comments	Ref.	
			~10	0.032 (2 kV _{p-p})	Space velocity = 24000 h ⁻¹		
Р	0.25% CH ₄ – 2.5% O_2	≠≠	~25	0.091 (3 kV _{p-p})		28	
	balance rie		~31	0.165 (4 kV _{p-p})	Temperature = 180°C		
			~10		Fin = 200 mL·min ⁻¹		
100	0.25% CH₄ – 2.5% O ₂		10	$0.023 - 0.040 (2 kV_{p-p})$	Space velocity = 24000 h ⁻¹	20	
IPC	– balance He	≠≠	~25	$0.101-0.110(3 \text{ kV}_{p-p})$	Temperature = 180°C	28	
			~43	0.172-0.227(4 kV _{p-p})	Catalyst: 2wt%Pd /TiO ₂		
-			~8	0.008-0.032 (2 kV _{p-p})	Space velocity = 24000 h ⁻¹		
IPC	0.25% CH ₄ – 2.5% O_2	≠≠	~20	0.083-0.094 (3 kV _{p-p})	Temperature = 180 °C	28	
			~55	0.169-0.193 (4 kV _{p-p})	Catalyst: 2wt%Pd /SiO ₂		
-			~10	0.018-0.034 (2 kV _{p-p})	Space velocity = 24000 h ⁻¹		
IPC	0.25% CH ₄ – 2.5% O_2	≠≠	~28	0.088-0.097 (3 kV _{p-p})	Temperature = 180 °C	28	
			~70	0.163-0.193 (4 kV _{p-p})	Catalyst: 2wt%Pd /γ-Al ₂ O ₃		
				0.163.0.103	Space velocity = 24000 h ⁻¹		
PPC	0.25% CH ₄ – 2.5% O_2	≠≠	~45	0.163-0.193	Temperature = 180 °C	28	
				(4 KV _{p-p})	Catalyst: 2wt%Pd /γ-Al ₂ O ₃		
		DBD coaxial reactor	~7	~0.27	Fin = 200 ml/min in air ($N_2/O_2 = 80/20$) containing 1000		
		Cylindrical electrode ID=10mm,	~18	~0.93	ppm CH4 (958.6 ppm)		
IPC	0.096% CH ₄ – balance	OD=30mm, L=50mm, gap=10mm	10	0.55	Residence time: ~3.6 s	31	
	Air	AC high voltage power supply,	~20	~1.20	Catalyst : ferroelectric 1-mm BaTiO ₃ pellets (relative		
		operating at 50 Hz; electric field strength: 1-5 kV/cm	~26	~1.44	dielectric constant of ~15,000)		
		Coaxial DBD packed-bed plasma	IPC: >20%				
		reactor	(BaTiO3: 55%)	0.6-0.7 @ 150-180°C	(N ₂ /O ₂ =80/20) containing 200-400 ppm CH ₄		
IPC	0.02-0.04% CH ₄ in Air	ID=44 mm, OD=54 mm, 120 mm	P: 11%			59	
			length	IPC: 63%	0.11 + heat @ 240°C	Catalyst : 13X zeolite, BaTiO ₃ and Pd/Pt on alumina	
		20-kHz AC power supply	Pd(0.03%)/Al ₂ O ₃				

Conf.1	Feed composition	Plasma Technology	CH₄ conv. (%)	SEI (J·mL ⁻¹)	Comments	Ref.
IPC	0.05% CH ₄ in Air	Coaxial DBD reactor of 24 mm internal diameter. Use of AC power unit (V _{pk-pk} =0-20 kV) operating at 10.25-13.25 kHz.	5.4%	0.118	 1 I/min (N₂/O₂=80/20) containing ~500 ppm of CH₄ Residence time: 0.25 s Catalyst: BaTiO3, 3.5-mm beads. Good trade-off between the number of beads Contact points (discharge enhancement) and bed porosity (low pressure drop) 	32
IPC	0.03% CH₄ in Air	Coaxial pulsed corona Ground electrode: aluminum cylinder,ID=50mm HV electrode: 0.075-mm tungsten wire, length of 10 mm. Pulsed DC power unit, Applied voltage: 28 kV positive polarity Voltage rise-time: 70 ns & decay time: 4.5 μs.	Plasma alone: 10% Plasma alone: 3% Plasma- material: 5%	35 J/L 8.5 J/L 3.5 J/L	0.1 l/min (N ₂ /O ₂ =80/20) containing ~300 ppm of CH ₄ Material: Silica gel beads (transparent spherical beads of 3-5 mm diameter, with a surface area of 76 m ² /g, pore volume 0.119 cm ³ /g and density 0.691 g/ cm ³)	37
Р	0.03% CH ₄ in Air	Glow discharge in a Micro hollow cathode and a planar anode DC power unit at 470V and 12-22mA atmospheric pressure electron density on the order of 10 ¹² cm ⁻³ and a gas temperature of 2000 K	80%	4 kJ/L	 F_{in} = 100 ml/min of dry air containing ~300 ppm of CH₄ The atomic oxygen impact reactions play a dominant role in CH4 removal in this kind of glow discharge 	38
P IPC PPC	0.1% CH₄ in Air	Coaxial DBD HV electrode: 0.9-mm tungsten wire quartz tube: 15 mm inner diameter, 300 mm long ground: copper-made grid wrapped around the quartz tube discharge length: 100 mm discharge volume: 18 cm ³ Pulsed HV generator of 20 kV into 500 ns pulses (FWHM) at a maximum pulse frequency of ~1 kHz	67% 100% 100%	148 J/L	 F_{in} = 1 L/min of dry air containing 1000±5 ppm CH₄ ~2.2 g catalyst was used for the catalytic and plasmacatalytic trials Catalytic bed volume: 4.1 mL gas hourly space velocity (GHSV): of 21 500 h⁻¹ At <400°C, ~20% higher conversion was attained in plasma-catalysis than thermal catalysis for the same temperature 	39

Conf.1	Feed composition	Plasma Technology	CH₄ conv. (%)	SEI (J∙mL⁻¹)	Comments	Ref.
P	0.1% CH₄ in N₂:O₂:H₂O= 81:9:10	Coaxial DBD reactor 1.5 mm discharge gap Dielectric barrier: Pyrex borosilicate glass of 3 mm thickness (ID=22 mm, OD=25 mm) HV electrode: stainless steel rod of 19 mm diameter Ground electrode: copper-made tape/metallic mesh wrapped around the Pyrex tube Discharge length: 10 cm AC power supply of 300-8000 Hz and maximum applied peak voltage of 10 kV	40%	1500	Fin = 2 L/min1000±5 ppm CH4Feed preheating up to 105°CWater changed the electrical and physical properties ofthe discharge (ions' mobility) and more reactive species(OH radicals) were formed via direct electron water dissociation reactionsThe increase in CH4 removal was attributed to the enhancement of the following reaction: $CH4 + OH \rightarrow CH3 + H2O$ NO concentration decreased drastically while NO2 decreased slightly. Nitrous oxide concentration was less affected by the water vapor content as compared to NO and NO2.	61
P	2500 ppm CH₄ , 2.5% O₂ in He	DBD reactor 1000:1 high voltage probe (Tektronics P6015A) Current probe (Pearson electronics 6585) Capacitor (1000 pF) HV electrode: stainless steel rod of 3 mm diameter Discharge gap: .5 mm Discharge length: 2.2 cm Reaction volume: 1.7 cm ³ Driving frequency =4 kHz, Applied voltage =4 kV _{p-p}	Plasma alone: ~36 @ 25°C 80% @ 410°C Plasma-catalyst: ~32 @ 25°C >95% @ 410°C	186 J/L 168 J/L	Fin = 0.2 L/min Catalytic bed length: 5-7 mm Catalyst beads: d _p =425–600 μm 0.5g of catalyst Co ₁ Ni ₁ O _x catalyst calcined at 500 °C exhibited the best performance, with high selectivity toward CO ₂ (>85%) even at ambient temperature	33

Table S1: (Continued)

Conf. ¹	Feed composition	Plasma Technology	CH₄ conv. (%)	SEI (J·mL⁻¹)	Comments	Ref.
P	131 ppm CH₄ (8.20·10 ⁻³ mol/m³), 2.5% O₂ in He	DBD reactor Pulse power supply (DP-12K5-SCR, PECC, Japan): 0.5W HV electrode: stainless steel rod of 6 mm diameter Discharge gap: 2 mm Discharge length: 5 cm Reaction volume: 1.7 cm ³ (d _p =425–600 μm) Sinusoid waveform Driving frequency =4 kHz, Applied voltage =4 kV _{p-p}	Plasma alone: <10% @ 25°C ~12% @ 150°C Plasma-catalyst: ~16% @ 25°C ~22% @ 150°C	186 J/L 168 J/L	 Fin = 0.1 L/min 1.23–1.33 g of catalyst Catalyst beads: d_p=425–600 μm Temperature programmed discharge experiments were carried out from 25°C to 150 °C with a heating rate of 10 [°]C /min after an initial 4h saturation step under the feed stream Au addition improved the performance of the catalyst, facilitating the release of of gaseous CO₂ from the formed surface bidentate carbonate species 	36

¹Reactor configuration: **P**: Plasma only, **IPC**: in-plasma catalysis, **PPC**: Post-plasma catalysis

Configuration ¹	Feed composition	Plasma Technology	NO _x removal (%)	SEI (J∙mL⁻¹)	Comments	Ref.
D	1000 ppm NO – N_2 – Air Relative humidity =42%	Direct current Corona	~70%	10 W	The vapor in the flue gas restrains the	18
	1000 ppm NO $- N_2 - Air$ Relative humidity =68%	discharge	>60%	8W	enhances the DeNO _x efficiency.	40
IPC	300-500 ppm NO, 15-50 ppm NO ₂ , 10 % O ₂ , 5% CO ₂ and N ₂ balance	Pulsed Corona discharge	~20%	0.1	Catalyst: γ-Al ₂ O ₃ Without additive as reductant	46
IPC	300-500 ppm NO, 15-50 ppm NO ₂ , 10 % O ₂ , 5% CO ₂ and N ₂ balance	Pulsed Corona discharge	~70%	0.1	Catalyst: γ-Al ₂ O ₃ With additive as reductant (1000 ppm CH ₃ OH)	46
Р	786 ppm NO, 106 ppm NO ₂ , 191 ppm CO, 4.2 % H ₂ O, 5.1% CO ₂ and O ₂ + N ₂ balance	DBD	~20%	0.1	T _{gas} = 160°C Without additive as reductant	47
Р	786 ppm NO, 106 ppm NO ₂ , 191 ppm CO, 4.2 % H ₂ O, 5.1% CO ₂ and O ₂ + N ₂ balance	DBD	~50%	0.1	$T_{gas} = 160^{\circ}C$ With additive as reductant (730 ppm C ₃ H ₆)	47
Р	953 ppm NO, 141 ppm NO ₂ , 176 ppm CO, 6.1 % H ₂ O, 6.3% CO ₂ and O ₂ + N ₂ balance	DBD	~50%	0.1	$T_{gas} = 160^{\circ}C$ With additive as reductant (730 ppm C ₃ H ₆)	47
Ρ	Actual flue gas (up to 40ppm of NO) from a 0.56 kW CH₄ burner	DBD	~90%	0.03	Highest NO removal efficiency was reached at SEI=21 and 10 J/L for flue gases from lean combustion mixtures (air equivalence ratios of 1.2 and 1.4 respectively)	49
					Required power for plasma below 1% of the power generated by the CH₄ burner.	
Р	163 ppm NO (<i>200 mg·m</i> -³), [382		Plasma only: 62.5%		Catalyst: hierarchically structured $MnO_x@CuO_x$	
IPC	ppm SO ₂ (<i>1000 mg·m</i> ⁻³)] + N ₂ balance	DBD	IPC: 98.7%	0.3	NO removal efficiency dropped to 76.6% when 382 ppm of SO ₂ were added in the feed	50

Table S2: NO_x removal (%) and SEI (J·mL-1) for low content NO_x feedstocks over different plasma reactor configurations

¹Reactor configuration: **P**: Plasma only, IPC: in-plasma catalysis, PPC: Post-plasma catalysis

Configuration ¹	Feed composition	Plasma Technology	NO _x removal (%)	SEI (J⋅mL ⁻¹)	Comments	Ref.
P	450 ppm N ₂ O, 0-20%O ₂ + N ₂ balance	DBD	Plasma only: 59% IPC: ~94%	25.6 kV	Catalysts: [Ru, Ag, Ce, Co, Cu, Fe, Ni, V] supported on γ-Al ₂ O ₃ N ₂ O decomposition efficiency dropped to ~65% and to <10% for the IPC plasma only configurations respectively when O ₂ content increased to 20%	50

¹Reactor configuration: P: Plasma only, IPC: in-plasma catalysis, PPC: Post-plasma catalysis

Configuration ¹	Feed composition	Blasma Technology	Conversion	(%)	SEI (l.ml ⁻¹)	Comments	Pof
configuration			CH4	NOx		Comments	Ner.
D	0.36% CH₄ – 3% O₂ – 3000 ppm NO – balance N₂	The plasma was ignited with a surfatron device connected to a MW power supply of 75 W	97-99	68	_	Total flowrate = 100 ml/min Selectivity towards $CO_2 = 6-8\%$ (CO & H ₂ O are	25
P		maintained at 4 Torr				The products from NO removal were not	35
	0.36% CH₄ – 3% O ₂ – balance N ₂	Estimated energy density = 10 W·cm⁻ ³	95-99	_	-	specified for the plasma only configuration.	
Ρ	0.36% CH ₄ – 3% O ₂ – 3000 ppm NO –		97-99	88		Selectivity towards $CO_2 = 8-10\%$ (CO & H ₂ O are the main products)	25
	0.36% CH₄ – 3% O ₂ – balance Ar	<i>≠≠</i>	95-99	-		The products from NO removal were not specified for the plasma only configuration.	
	0.36% CH₄ – 3% O ₂ –		-	~18	-	Catalyst: Perovskite La _{0.5} Sr _{0.5} CoO _{3-d} (100 mg)	
IPC	3000 ppm NO – balance N ₂	<i>≠</i> ≠				The implementation of catalyst decreased the NO removal, as a result of recombination processes between plasma species occurring on the catalyst surface.	35
	0.36% CH₄ – 3% O₂ – 3000 ppm NO – balance Ar		_	~65	_	XPS analysis showed that NO _x and NO ₂ adsorbed species were formed onto the surface of the perovskite exposed to these plasmas.	
			3 (300°C)		0.036		
			5 (300°C)		0.058	Total flowrate = 250 ml/min	
			9 (300°C)		0.080	Reaction volume = 14.5 cm ³	
			~14 (375°C)		0.036	Discharge pulse energy = 15 mJ·pulse ⁻¹	
Р	bpm NO – balance N_2	DBD plasma quartz reactor	~25 (375°C)	-	0.058	NO_x are not removed at temperatures up to $275^{\circ}C$ NO is just evidized to NO (total NO	57
			~31 (375°C)		0.080	constant). However, at temperatures > $375^{\circ}C$	
			~30 (450°C)		0.036	NO_x are produced due to NO formation from N ₂	
			~45 (450°C)		0.058	+ O_2 in the feed.	
			~60 (450°C)		0.080		

Table S3: CH₄ and NO_x removal (%) along with SEI (J·mL⁻¹) over different plasma reactor configurations

Configuration ¹	Feed composition	Plasma Technology	Conversion (%)		SEI (J·mL ⁻¹)	Comments	Ref.
Geringuration			CH ₄	NOx	····· ,		
Р	0.1% CH ₄ – 8% O ₂ – 7% CO ₂ – 150 ppm NO – balance N ₂	<i>≠≠</i>	≠≠		≠≠	Addition of CO_2 in the feed stream did not affect CH_4 removal. However, in the plasma only configuration CO was produced from CO_2 decomposition	57
			2 (300°C)		0.036	Total flowrate = 250 ml/min	
			4 (300°C)		0.058		
	0.1% CH₄ – 8% O ₂ – 7% CO₂ – 150 ppm NO – balance N ₂		~8 (300°C)		0.080	Poaction volume - 14 5 cm ³	
			~18 (375°C)		0.036		
PPC		≠≠	~25 (375°C)		0.058	Discharge nulse energy – 15 ml·nulse ⁻¹	57
			~31 (375°C)		0.080	Discharge pulse chergy – 15 his pulse	
			~72 (475°C)		0.036	Catalyst: y-Al-O-	
			~85 (475°C)		0.058		
			~91 (475°C)		0.080		
		DBD plasma quartz reactor	10 (338°C)		0.036	Total flowrate = 250 ml/min	
						Discharge pulse energy = 35 mJ·pulse ⁻¹	
		Tungsten electrode of 0.9 mm thickness	10 (325°C)		0.058	0.5, 1.6 wt.% Pd or 0.36 wt.% Pt supported on $\gamma\text{-}\text{Al}_2\text{O}_3$	
	0.1% CH ₄ – 8% O ₂ – 7%		30 (412°C)		0.036		
PPC	CO ₂ – 150 ppm NO –	Discharge zone: 15 cm				Slight improvement in complete CH ₄ oxidation	58
	balance N ₂	Discharge gap: 5.5 mm	30 (388°C)		0.058	toward CO_2 was observed with water vapor addition in the feed at SEI=0.036 J·mL ⁻¹ at 450°C,	
						at much lower temperature for SEI=0.058 J·mL ⁻¹	
		Voltage probe: TEKTRONIX P6015A, 770 (475°C) 0	0.036	at(300°C)			
						Negligible NO_x detected in the product stream	
		Current probe: EUKOPULSE 9001	~90 (475°C)		0.058	tor temperatures below 475°C	

Configuration ¹	Food composition	Plasma Technology	Conversion	า (%)	SEL (liml-1)	Comments	Pof
Configuration	reeu composition	Plasifia Technology	CH ₄	NO _x	3EI (J-IIIE)	Comments	Rel.
IPC	1.67%CH ₄ – 5%O ₂ – balance N ₂ (NO _x were adsorbed on the materials in the previous step)	DBD quartz reactor – powered by AC source	100 100 100 100	~52 ~72 ~85 ~92	_	Catalyst/adsorbent: commercial H-ZSM-5 (Si/Al=22, without further modifications) Total flowrate = 30 ml/min The process included a cyclic operation: 1) NO _x adsorption stage (plasma off) 2)Discharge stage (plasma on) NO _x to N ₂ conversion	56
РРС	610 ppm $CH_4 - 0$ - 10.4% $H_2O - 0$ -10% O_2 -0 -10 % CO_2 - 600 ppm NO - balance N_2 simulating an actual LNG exhaust gas	DBD ceramic tube reactor, ID=20mm, OD=24mm Toothed stainless steel discharge electrode with a diameter of 16 mm Discharge zone: 15 cm Discharge gap: 5.5 mm HAVC power supply (CTP2000K) 5 - 25 kHz Output voltage = 0 - 25 kV	50% (400°C) 94.3% (481°C)	50% (350°C) 84.5% (481°C)	0.33	Total flowrate = 3300 l/min Reaction volume = 12.5 cm ³ Catalyst: 3.9wt.% In/BEA	60

References ²

- A. Baylet, P. Marécot, D. Duprez, X. Jeandel, K. Lombaert and J. M. Tatibouët, *Appl. Catal. B Environ.*, 2012, **113–114**, 31–36.
- 27 F. De Rosa, C. Hardacre, W. G. Graham, G. McCullough, P. Millington, P. Hinde and A. Goguet, *Catal. Today*, 2022, **384–386**, 177–186.
- 28 H. Lee, D.-H. Lee, Y.-H. Song, W. C. Choi, Y.-K. Park and D. H. Kim, *Chem. Eng. J.*, 2015, **259**, 761–770.
- T. Pham Huu, S. Gil, P. Da Costa, A. Giroir-Fendler and A. Khacef, *Catal. Today*, 2015, **257**, 86–92.
- 30 L. Tang, X. Yang, K. Zhao and H. Huang, *Atmos. Pollut. Res.*, 2019, **10**, 24–29.
- A. Ogata, K. Mizuno, S. Kushiyama and T. Yamamoto, *Plasma Chem. Plasma Process.*, 1998, 18, 363– 373.
- 32 K. J. Pringle, J. C. Whitehead, J. J. Wilman and J. Wu, *Plasma Chem. Plasma Process.*, 2004, 24, 421–434.
- 33 H. Lee, T. H. Lim and D. H. Kim, *Catal. Commun.*, 2015, **69**, 223–227.
- J. L. Hueso, A. Caballero, J. Cotrino and A. R. González-Elipe, *Catal. Commun.*, 2007, **8**, 1739–1742.
- J. L. Hueso, J. Cotrino, A. Caballero, J. P. Espinós and A. R. González-Elipe, J. Catal., 2007, 247, 288–297.
- 36 S. Yao, Z. Chen, S. Weng, L. Mao, X. Zhang, J. Han, Z. Wu, H. Lu, X. Tang, B. Jiang and T. Nozaki, *J. Hazard. Mater.*, 2019, **373**, 698–704.
- 37 M. A. Malik, Y. Minamitani and K. H. Schoenbach, *IEEE Trans. Plasma Sci.*, 2005, **33**, 50–56.
- 38 Chunqi Jiang, A.-A. H. Mohamed, R. H. Stark, J. H. Yuan and K. H. Schoenbach, *IEEE Trans. Plasma Sci.*, 2005, **33**, 1416–1425.
- T. Pham Huu, L. Sivachandiran, P. Da Costa and A. Khacef, *Top. Catal.*, 2017, **60**, 326–332.
- 46 H. H. Kim, K. Takashima, S. Katsura and A. Mizuno, J. Phys. D. Appl. Phys., 2001, 34, 604–613.
- 47 M. Schmidt, R. Basner and R. Brandenburg, *Plasma Chem. Plasma Process.*, 2013, **33**, 323–335.
- 48 H. Lin, X. Gao, Z. Luo, K. Cen and Z. Huang, *Fuel*, 2004, **83**, 1349–1355.
- 40 R. Paulauskas, I. Jõgi, N. Striūgas, D. Martuzevičius, K. Erme, J. Raud and M. Tichonovas, *Energies*, 2019, **12**, 3955.
- 50 Y. Liao, K. Zhao, J. Yang, X. An, P. Zhang, Y. Dou, M. Zhao and D. Fu, *Small*, 2022, **18**, 1–11.
- 56 H. Wang, Q. Yu, T. Liu, L. Xiao and X. Zheng, *RSC Adv.*, 2012, **2**, 5094–5097.
- 57 R. Marques, S. Da Costa and P. Da Costa, *Appl. Catal. B Environ.*, 2008, **82**, 50–57.
- P. Da Costa, R. Marques and S. Da Costa, Appl. Catal. B Environ., 2008, 84, 214–222.
- 59 J. F. Xia, X. X. Gao, J. Y. Kong, H. X. Hui, M. Cui and K. P. Yan, *Plasma Chem. Plasma Process.*, 2000, **20**, 225–233.
- 60 H. Li, Y. Cai, C. Xiang, J. Song and L. Lü, *Res. Chem. Intermed.*, 2023, **49**, 3681–3703.
- A. Mfopara, M. J. Kirkpatrick and E. Odic, *Plasma Chem. Plasma Process.*, 2009, **29**, 91–102.