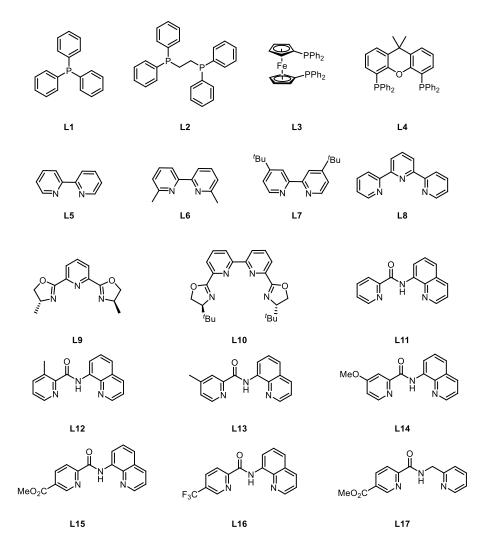
Supplementary Information (SI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2025

Supporting Information

Table of Contents


1 General remarks
2 The ligands used in this reaction
2.1 Experimental procedures and characterization data for N,N,N-ligands
2. Optimization of reaction conditions
3. General procedure10
4. Later-stage of pharmaceutical derivatives10
4.1 Synthesis of Compound 50 ² 10
4.2 Synthesis of Compound 51 ³ 11
4.3 Synthesis of Compound 52 ⁴ 11
4.4 Synthesis of Compound 53 ⁵ 12
5. Scale-up reaction
6. Radical inhibition experiments13
7. Radical capture experiment14
8. Reaction with Co ₂ (CO) ₈ 14
9. Characterization data of products15
10. Reference
11. Spectra of compounds

1 General remarks

Unless otherwise noted, all reactions were carried out under carbon monoxide or nitrogen atmosphere. All reagents were from commercial sources and used as received without further purification. All solvents were dried by standard techniques and distilled prior to use. Column chromatography was performed on silica gel (200-300 meshes) using petroleum ether (bp. 60–90 °C), dichloromethane and ethyl acetate as eluent. All NMR spectra were recorded at ambient temperature using Bruker Avance III 400 MHz NMR (¹H, 400 MHz; ¹³C {1H}, 100 MHz, ¹⁹F 376 MHz). ¹H NMR chemical shifts are reported relative to TMS and were referenced via residual proton resonances of the corresponding deuterated solvent (CDCl₃: 7.26 ppm; DMSO-d₆: 2.50 ppm) whereas ¹³C {1H} NMR spectra are reported relative to TMS via the carbon signals of the deuterated solvent (CDCl₃: 77.0 ppm; DMSO-d₆: 39.5 ppm. Data for 1H are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, m = multiplet, br =broad), coupling constant (Hz), and integration. All ¹³C NMR spectra were broad-band ¹H decoupled. All reactions were monitored by GC-FID or NMR analysis. HRMS data was obtained with Micromass HPLC-Q-TOF mass spectrometer (ESI) or Agilent 6540 Accurate-MS spectrometer(Q-TOF).

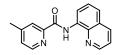
Because of the high toxicity of carbon monoxide, all the reactions should be performed in an autoclave. The laboratory should be well-equipped with a CO detector and alarm system.

2 The ligands used in this reaction

2.1 Experimental procedures and characterization data for *N*,*N*,*N*-ligands

N,N,N-ligands L11-L17 were synthesized according to the modified published procedures.¹

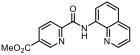
$$R = \underbrace{\overset{O}{\overset{}}_{\square} OH}_{N} + \underbrace{\overset{N+H_2}{\overset{}}_{\square} OH}_{DCM, r.t.} + \underbrace{\overset{N-methylmorpholine (1.5 eq.)}{DCM, r.t.} R = \underbrace{\overset{O}{\overset{}}_{\square} N}_{N} + \underbrace{$$


To a round-bottom flask equipped with a Teflon-coated magnetic stir bar were added 2picolinic acid (1.3 equiv.), *N*-methylmorpholine (1.5 equiv.) and DCM (0.2 M) under N₂. The reaction mixture was cooled to 0 °C, followed by addition of *iso*-butylchloroformate (1.3 equiv.). Amine (1.0 equiv) was subsequently added into the reaction by dissolving with DCM after the reaction mixture was stirred at 0 °C for 30 min. The reaction mixture was allowed to warm to room temperature and stirring for 24 h. Upon completion, concentrated under reduced pressure. The crude product was purified through column chromatography on neutral alumina.

3-Methyl-N-(quinolin-8-yl)picolinamide (L12)

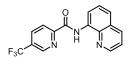
¹<u>H NMR (400 MHz, CDCl₃)</u> δ 12.32 (s, 1H), 9.08 – 8.87 (m, 2H), 8.59 (d, J = 4.6 Hz, 1H), 8.12 (dt, J = 8.3, 1.3 Hz, 1H), 7.72 – 7.48 (m, 3H), 7.42 (dd, J = 8.2, 4.2 Hz, 1H), 7.32 (dd, J = 7.8, 4.6 Hz, 1H), 2.84 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 163.0, 150.3, 148.9, 148.7, 148.4, 139.3, 136.2, 134.5, 128.1, 127.3, 127.1, 123.3, 122.0, 121.6, 116.8, 21.2.


4-Methyl-N-(quinolin-8-yl)picolinamide (L13)

<u>¹H NMR (400 MHz, CDCl₃)</u> δ 12.26 (s, 1H), 9.01 (dd, *J* = 7.8, 1.6 Hz, 1H), 8.93 (q, *J* = 3.4, 1.6 Hz, 1H), 8.59 (t, *J* = 4.0 Hz, 1H), 8.27 – 8.08 (m, 2H), 7.67 – 7.54 (m, 1H), 7.54 – 7.48 (m, 1H), 7.47 – 7.39 (m, 1H), 7.29 – 7.22 (m, 1H), 2.44 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 163.0, 150.3, 148.9, 148.7, 148.4, 139.3, 136.2, 134.5, 128.1, 127.3, 127.1, 123.3, 122.0, 121.6, 116.8, 21.2.


Methyl 6-(quinolin-8-ylcarbamoyl)nicotinate (L15)

¹H NMR (400 MHz, CDCl₃) δ 12.29 (s, 1H), 9.38 (s, 1H), 9.10 – 8.95 (m, 1H), 8.52 (d, J = 8.1 Hz, 1H), 8.43 (d, J = 8.1 Hz, 1H), 8.20 (d, J = 7.8 Hz, 1H), 7.61 (d, J = 7.8 Hz, 2H), 7.50 (dd, J = 8.3, 4.2 Hz, 1H), 4.01 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 161.7, 153.5, 149.8, 148.8, 139.3, 138.7, 136.3, 133.9, 128.2, 127.3, 122.4, 122.1, 121.7, 117.0, 52.7.

N-(Quinolin-8-yl)-5-(trifluoromethyl)picolinamide (L16)

¹<u>H NMR (400 MHz, CDCl₃)</u> δ 12.26 (s, 1H), 9.07 (dt, J = 2.0, 0.8 Hz, 1H), 9.04 – 8.93 (m, 2H), 8.49 (d, J = 8.4 Hz, 1H), 8.19 (td, J = 8.0, 2.0 Hz, 2H), 7.71 – 7.57 (m, 2H), 7.51 (dd, J = 8.4, 4.0

Hz, 1H).

¹³C NMR (100 MHz, CDCl₃): δ 161.2, 153.6, 149.0, 145.8 (q, J = 4.2 Hz), 139.4, 136.4, 135.0 (q, J = 3.3 Hz), 134.2, 129.0 (q, J = 33.2 Hz), 128.2, 127.4, 123.4 (q, J = 271.1 Hz), 122.6, 122.3, 121.8, 117.1.

¹⁹F NMR (376 MHz, CDCl₃) δ -62.5.

Methyl 6-((pyridin-2-ylmethyl)carbamoyl)nicotinate (L17)

¹<u>H NMR (400 MHz, Chloroform-*d*)</u> δ 9.19 (d, J = 2.1 Hz, 1H), 9.00 (t, J = 5.9 Hz, 1H), 8.67 – 8.59 (m, 1H), 8.45 (dd, J = 8.1, 2.1 Hz, 1H), 8.31 (d, J = 8.1 Hz, 1H), 7.68 (td, J = 7.7, 1.8 Hz, 1H), 7.35 (d, J = 7.8 Hz, 1H), 7.25 – 7.17 (m, 1H), 4.82 (d, J = 5.6 Hz, 2H), 3.99 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 165.2, 163.5, 156.6, 152.8, 149.6, 149.4, 138.5, 136.8, 128.0, 122.4, 122.0, 121.9, 52.7, 44.8.

2. Optimization of reaction conditions

 Table 1: The effect of Ligands.

CI CN + CO +	Co(acac) ₂ (10 mol%) Ligand (10 mol%) Mn (20 mol%) Na ₂ CO ₃ (1.5 eq.)	
S1	MeCN (1.5 mL) S2 80 °C	1
Entry	Ligand	Yield $(\%)^a$
1	L1 (20 mol%)	0
2	L2	0
3	L3	0
4	L4	0
5	L5	0
6	L6	0
7	L7	0
8	L8	0
9	L9	0
10	L10	0
11	L11	0
12	L12	79
13	L13	19
14	L14	25
15	L15	32
16	L16	78
17	L17	80

Reaction conditions: **S1** (1.5 eq.), **S2** (0.3 mmol), Co(acac)₂ (10 mol%), **Ligand** (10 mol%), Mn (20 mol%), Na₂CO₃ (1.5 eq.), MeCN (1.5 mL), **CO** (30 bar), 80 °C, 12 h. ^{*a*}Yields were determined by GC with dodecane as an internal standard.

Table 2: The effect of Metal sal

CI CN + CO + S1	Metal salt (10 mol%) L17 (10 mol%) Mn (20 mol%) Na ₂ CO ₃ (1.5 eq.) MeCN (1.5 mL) 80 °C	
Entry	Metal salts	Yield $(\%)^a$
1	Co(acac) ₃	58
2	<i>CoCl</i> ₂ •6 <i>H</i> ₂ <i>O</i>	99 (92 ^b)
3	Co(OAc) ₂ •4H ₂ O	41
4	Co(OAc) ₂	51
5	CoCl ₂	42
6	CoBr ₂	49
7	w/o [Co]	0
8	Pd(OAc) ₂ (1 mol%, w/o Mn)	0
9	Ni(acac) ₂ (w/o Mn)	0
10	Cu(acac) ₂ (w/o Mn)	0

Reaction conditions: **S1** (1.5 eq.), **S2** (0.3 mmol), Metal salt (10 mol%), **L17** (10 mol%), Mn (20 mol%), Na₂CO₃ (1.5 eq.), MeCN (1.5 mL), **CO** (30 bar), 80 °C, 12 h. "Yields were determined by GC with dodecane as an internal standard. ^bIsolated yield.

 Table 3: The effect of reductant.

CITCN + CO S1	+ NH ₂ S2 CoCl ₂ •6H ₂ O (10 mol%) L17 (10 mol%) reductant (x mol%) Na ₂ CO ₃ (1.5 eq.) MeCN (1.5 mL) 80 °C	
Entry	Reductant (x mol%)	Yield $(\%)^a$
1	w/o Mn	0
2	Mn (10 mol%)	89
3	Mn (30 mol%)	99
4	Mn (40 mol%)	99
5	Mn (60 mol%)	99
6	Zn (20 mol%)	90
7	MeSiH(EtO) ₂ (20 mol%)	92
8	SiH(MeO) ₃ (20 mol%)	98

Reaction conditions: **S1** (1.5 eq.), **S2** (0.3 mmol), CoCl₂•6H₂O (10 mol%), **L17** (10 mol%), reductant (x mol%), Na₂CO₃ (1.5 eq.), MeCN (1.5 mL), **CO** (30 bar), 80 °C, 12 h. ^{*a*}Yields were

determined by GC with dodecane as an internal standard.

 Table 4: The effect of solvents.

CI ← CO + CO + S1	CoCl ₂ •6H ₂ O (10 mol%) L17 (10 mol%) Mn (20 mol%) Na ₂ CO ₃ (1.5 eq.) solvent (1.5 mL) 80 °C	
Entry	Reductant (x mol%)	Yield $(\%)^a$
1	Dioxane	0
2	THF	0
3	DMF	0
4	PhCF ₃	0
5	DCE	0
6	DCM	0
8	DME	0

Reaction conditions: S1 (1.5 eq.), S2 (0.3 mmol), $CoCl_2 \cdot 6H_2O$ (10 mol%), L17 (10 mol%), Mn (20 mol%), Na₂CO₃ (1.5 eq.), MeCN (1.5 mL), CO (30 bar), 80 °C, 12 h. "Yields were determined by GC with dodecane as an internal standard.

Table 5: The effect of bases.

CITCN + CO + S1	CoCl ₂ •6H ₂ O (10 mol%) L17 (10 mol%) Mn (20 mol%) base (1.5 eq.) MeCN (1.5 mL) 80 °C	
Entry	base	Yield (%) ^a
1	K ₂ CO ₃	85
2	K ₃ PO ₄	86
3	Na ₃ PO ₄	98
4	Et ₃ N	83
5	DBU	60
6	pyridine	91

Reaction conditions: S1 (1.5 eq.), S2 (0.3 mmol), $CoCl_2 \cdot 6H_2O$ (10 mol%), L17 (10 mol%), Mn (20 mol%), Base (1.5 eq.), MeCN (1.5 mL), CO (30 bar), 80 °C, 12 h. ^{*a*}Yields were determined by GC with dodecane as an internal standard.

 Table 6: The effect of temperature.

<mark>CI∕∼</mark> CN + CO + S1	CoCl ₂ •6H ₂ O (10 mol%) L17 (10 mol%) Mn (20 mol%) Na ₂ CO ₃ (1.5 eq.) S2 x °C	
Entry	Temperature (°C)	Yield $(\%)^a$
1	60	99
2	50	<i>98</i>
3	40	64
4	r.t.	5

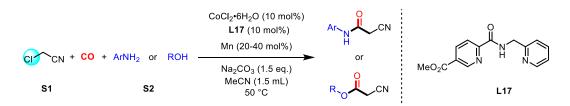
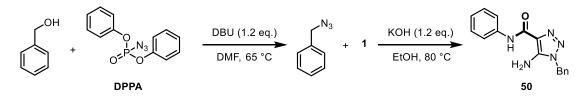

Reaction conditions: S1 (1.5 eq.), S2 (0.3 mmol), CoCl₂•6H₂O (10 mol%), L17 (10 mol%), Mn (20 mol%), Na₂CO₃ (1.5 eq.), MeCN (1.5 mL), CO (30 bar), x °C, 12 h. ^{*a*}Yields were determined by GC with dodecane as an internal standard.

Table 7: The effect of the pressure of CO.

CITCN + CO + S1 (x bar)	CoCl ₂ •6H ₂ O (10 mol%) L17 (10 mol%) Mn (20 mol%) Na ₂ CO ₃ (1.5 eq.) MeCN (1.5 mL) 50 °C	
Entry	Temperature (°C)	Yield $(\%)^a$
1	20	98
2	10	98
3	5	98
4	1	90

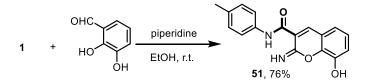
Reaction conditions: S1 (1.5 eq.), S2 (0.3 mmol), $CoCl_2 \cdot 6H_2O$ (10 mol%), L17 (10 mol%), Mn (20 mol%), Na₂CO₃ (1.5 eq.), MeCN (1.5 mL), CO (x bar), 50 °C, 12 h. "Yields were determined by GC with dodecane as an internal standard.


3. General procedure

A 4 mL screw-cap vial was charged with $CoCl_2 \cdot 6H_2O$ (10 mol%, 7.2 mg), L6 (5 mol%, 8.7 mg), Mn (20-40 mol%, 4.4-6.6 mg), Na₂CO₃ (0.45 mmol, 47.7 mg) and an oven-dried stirring bar. The vial was closed with a Teflon septum and cap and connected to the atmosphere via a needle. Then amines or alcohols (0.3 mmol), CICH₂CN (0.75 mmol, 90.0 mg), MeCN (1.5 mL) was added with a syringe under N₂ atmosphere, the vial was moved to an alloy plate and put into a Parr 4560 series autoclave (300 mL) under N₂ atmosphere. At room temperature, the autoclave was flushed with CO three times and charged with 5 bar CO. The autoclave was placed on a heating plate equipped with a magnetic stirrer. The reaction mixture was heated to 50 °C for 12 h. After the reaction was completed, the crude mixture was filtered and concentrated under vacuum. The crude product was purified by column chromatography (PE/EA =2/1 to 1/1) on silica gel to afford the corresponding 2-cyanoacetate compounds.

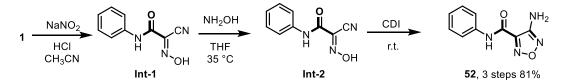
4. Later-stage of pharmaceutical derivatives.

4.1 Synthesis of Compound 50²



Step 1: A mixture of benzyl alcohol (4 mmol) and diphenylphosphoryl azide (**DPPA**, 1.2 eq.) were dissolved in dry solvent (7 mL). To the mixture at 0 °C, under N₂ atmosphere was added DBU (1.2 eq.). The reaction was warmed to room temperature and stirred until complete. The resulting mixture was washed with H₂O and 5% HCl. The organic phase was concentrated in vacuum and purified by silica gel chromatography using petroleum ether.

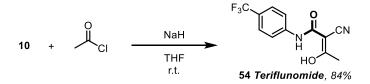
Step 2: To a 10 mL Schlenk tube (azidomethyl)benzene (0.3 mmol), 1 (0.2 mmol), KOH(1.5 eq.)


and EtOH (2 mL) were added. The mixture was stirred at 80 °C for 1h. The solvent of the reaction solution was removed by vacuum rotary evaporation. The solid was filtered by suction, and the filter cake was washed with ice-cold ethanol to obtain the target product (80%).

4.2 Synthesis of Compound 51³

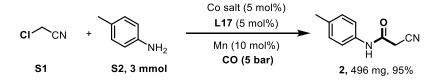
To a stirred solution of **1** (0.4 mmol) in EtOH (3 mL) were added 2,3-dihydroxybenzaldehyde (0.4 mmol) and piperidine (three drops). The resulting mixture was stirred at room temperature for 24 h. The insoluble materials are collected by filtration, washed with EtOH, and dried to give rise to the corresponding amides as a pale-yellow solid.

4.3 Synthesis of Compound 52⁴


Step 1: A 100-mL round-bottomed flask equipped with a magnetic stir bar was charged with the nitrile substrate (1.0 eq) and MeCN (0.2 M). To the stirred mixture was added concentrated HCl (10.0 eq). In a separate 1 Dram vial, sodium nitrite (2.2 eq) was dissolved in H₂O (7 M with respect to sodium nitrite). The resulting aqueous solution was added dropwise to the stirred reaction mixture at room temperature and stirred for 2-12 h. Upon complete consumption of the starting material, the reaction mixture was diluted with H₂O and transferred to a separatory funnel. The aqueous layer was extracted with EtOAc (x3). The combined organics were washed with brine (x1), dried (Na₂SO₄) and concentrated in vacuo. The crude product can be directly used in the next step without purification.

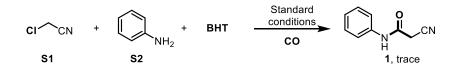
Step 2: A 20-mL vial equipped with a magnetic stir bar was charged with **Int-1** (0.5 g) and THF (10 mL). To the resulting homogeneous solution was added 50 wt % aqueous hydroxylamine (0.227 mg, 3.44 mmol) and the mixture was heated at 50 °C. Upon complete consumption of the starting material, as determined by TLC analysis, the reaction mixture was cooled to room temperature and diluted with H_2O (10 mL). The aqueous layer was extracted with DCM(x2). The combined organics

were washed with brine (x1), dried (Na₂SO₄) and concentrated in vacuo. The crude product can be directly used in the next step without purification.


Step 3: A 2-dram vial equipped with a magnetic stir bar was charged with the **Int-2** and THF (5.5 mL). To the resulting homogeneous solution was added 50 % aqueous hydroxylamine (0.129 g, 1.95 mmol). The mixture was heated at 35 °C until TLC analysis indicated complete consumption of the starting material (typically 12 h). The reaction mixture was cooled to rt and 1,1'- carbonyldiimidazole (0.365 g, 2.25 mmol) was added portion wise. Upon cessation of gas evolution, the reaction mixture was sampled and typically judged to be complete by TLC analysis. The reaction mixture was concentrated in vacuo and purified directly by column chromatography on silica gel using petroleum ethe/EtOAc as eluent.

4.4 Synthesis of Compound 53⁵

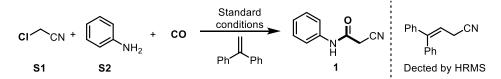
Amide 10 (228 mg, 1.00 mmol, 1.0 eq.) in dry THF (10 mL), NaH (92.0 mg, 2.30 mmol, 2.3 eq.) and acetyl chloride (78.5 mL, 1.10 mmol, 1.1 eq.) were used to give 54 as colorless crystals (84%). Rf = 0.65 (3:2 hexanes/acetone).


5. Scale-up reaction

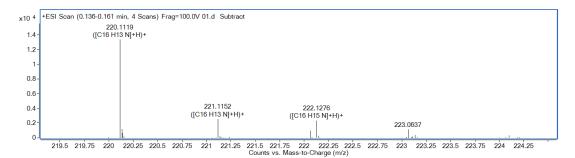
A 25 mL screw-cap vial was charged with CoCl₂ • 6H₂O (5 mol%), L17 (5 mol%), Mn (10 mol%), Na₂CO₃ (4.5 mmol, 477 mg) and an oven-dried stirring bar. The vial was closed with a Teflon septum and cap and connected to the atmosphere via a needle. Then aniline (3 mmol, 279mg), BrCH₂CN (7.5 mmol, 900 mg), MeCN (15 mL) was added with a syringe under N₂ atmosphere, the vial was moved to an alloy plate and put into a Parr 4560 series autoclave (300 mL) under N₂ atmosphere. At room temperature, the autoclave was flushed with CO three times and charged with

5 bar CO. The autoclave was placed on a heating plate equipped with a magnetic stirrer. The reaction mixture was heated to 50 °C for 24 h. After the reaction was completed, the crude mixture was filtered and concentrated under vacuum. The crude product was purified by column chromatography (PE/EA = 2/1) on silica gel to afford **2** (95%).

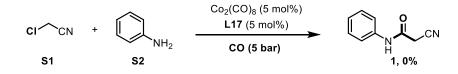
6. Radical inhibition experiments



A 4 mL screw-cap vial was charged with BHT (3 equiv., 198.3 mg), $CoCl_2 \cdot 6H_2O$ (10 mol%, 7.2 mg), L17 (10 mol%, 8.1 mg), Mn (20 mol%), Na_2CO_3 (0.45 mmol, 47.7 mg) and an oven-dried stirring bar. The vial was closed with a Teflon septum and cap and connected to the atmosphere via a needle. Then aniline (0.3 mmol, 27.9 mg), ClCH₂CN (1.5 eq.), MeCN (1.5 mL) was added with a syringe under N_2 atmosphere, the vial was moved to an alloy plate and put into a Parr 4560 series autoclave (300 mL) under N_2 atmosphere. At room temperature, the autoclave was flushed with CO three times and charged with 5 bar CO. The autoclave was placed on a heating plate equipped with a magnetic stirrer. The reaction mixture was heated to 50 °C for 16 h. After the reaction was completed, the crude mixture was filtered and concentrated under vacuum. Only a trace amount of the target product 1 was detected in GC-MS.


A 4 mL screw-cap vial was charged with **TEMPO** (3 equiv.), $CoCl_2 \cdot 6H_2O$ (10 mol%, 7.2 mg), **L17** (10 mol%, 8.1 mg), Mn (20 mol%), Na₂CO₃ (0.45 mmol, 47.7 mg) and an oven-dried stirring bar. The vial was closed with a Teflon septum and cap and connected to the atmosphere via a needle. Then aniline (0.3 mmol, 27.9 mg), ClCH₂CN (1.5 eq.), MeCN (1.5 mL) was added with a syringe under N₂ atmosphere, the vial was moved to an alloy plate and put into a Parr 4560 series autoclave (300 mL) under N₂ atmosphere. At room temperature, the autoclave was flushed with CO three times and charged with 5 bar CO. The autoclave was placed on a heating plate equipped with a magnetic stirrer. The reaction mixture was heated to 50 °C for 16 h. After the reaction was completed, the crude mixture was filtered and concentrated under vacuum. Only a trace amount of the target product **1** was detected in GC-MS.

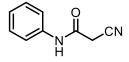
7. Radical capture experiment



A 4 mL screw-cap vial was charged with 1,1-DPE (3 equiv., 162.2 mg), $CoCl_2 \cdot 6H_2O$ (10 mol%, 7.2 mg), L17 (10 mol%, 8.1 mg), Mn (20 mol%), Na_2CO_3 (0.45 mmol, 47.7 mg) and an oven-dried stirring bar. The vial was closed with a Teflon septum and cap and connected to the atmosphere via a needle. Then aniline (0.3 mmol, 27.9 mg), $ClCH_2CN$ (1.5 eq.), MeCN (1.5 mL) was added with a syringe under N_2 atmosphere, the vial was moved to an alloy plate and put into a Parr 4560 series autoclave (300 mL) under N_2 atmosphere. At room temperature, the autoclave was flushed with CO three times and charged with 5 bar CO. The autoclave was placed on a heating plate equipped with a magnetic stirrer. The reaction mixture was heated to 50 °C for 16 h. After the reaction was completed, the crude mixture was filtered and concentrated under vacuum. 4,4-diphenylbut-3-enenitrile was detected by HRMS.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₆H₁₄N 200.1121; found: 200.1119.

8. Reaction with Co₂(CO)₈



A 4 mL screw-cap vial was charged with Co₂(CO)₈ (10 mol%, 7.2 mg), L17 (10 mol%, 8.1 mg),

 Na_2CO_3 (0.45 mmol, 47.7 mg) and an oven-dried stirring bar. The vial was closed with a Teflon septum and cap and connected to the atmosphere via a needle. Then aniline (0.3 mmol, 27.9 mg), ClCH₂CN (1.5 eq.), MeCN (1.5 mL) was added with a syringe under N₂ atmosphere, the vial was moved to an alloy plate and put into a Parr 4560 series autoclave (300 mL) under N₂ atmosphere. At room temperature, the autoclave was flushed with CO three times and charged with 5 bar CO. The autoclave was placed on a heating plate equipped with a magnetic stirrer. The reaction mixture was heated to 50 °C for 16 h. After the reaction, no product **1** was detected by GC-MS.

9. Characterization data of products

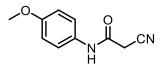
2-Cyano-N-phenylacetamide (1)

The title compound was prepared following the general procedure, purification by column chromatography on silica gel (petroleum ether/EtOAc = 2:1) yield (44 mg, 92%) as a white solid.

<u>¹H NMR (400 MHz, DMSO-*d*₆)</u> δ 10.29 (s, 1H), 7.81 – 7.47 (m, 2H), 7.38 – 7.28 (m, 2H), 7.09 (tt,

J = 7.2, 1.2 Hz, 1H), 3.90 (s, 2H).

¹³C NMR (100 MHz, DMSO-d₆) δ 161.5, 138.8, 129.4, 124.4, 119.7, 116.4, 27.2.

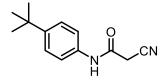

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₉H₉N₂O 161.0709; found: 161.0714.

2-Cyano-N-(p-tolyl)acetamide (2)

The title compound was prepared following the general procedure, purification by column chromatography on silica gel (petroleum ether/EtOAc = 2:1) yield (49 mg, 94%) as a white solid.

¹<u>H NMR (400 MHz, DMSO-*d*₆)</u> δ 10.20 (s, 1H), 7.43 (d, *J* = 8.4 Hz, 2H), 7.13 (d, *J* = 8.2 Hz, 2H), 3.87 (s, 2H), 2.25 (s, 3H).

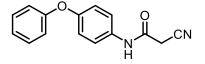
¹³C NMR (100 MHz, DMSO-d₆) δ 161.2, 136.3, 133.4, 129.7, 119.7, 116.4, 27.1, 20.9. HRMS (ESI-TOF) m/z: $[M+H]^+$ Calcd. for C₁₀H₁₁N₂O 175.0866; found: 175.0868. 2-Cyano-N-(4-methoxyphenyl)acetamide (3)


The title compound was prepared following the general procedure, purification by column chromatography on silica gel (petroleum ether/EtOAc = 1:1) yield (53 mg, 93%) as a white solid.

¹<u>H NMR (400 MHz, DMSO-*d*₆)</u> δ 10.15 (s, 1H), 7.46 (d, *J* = 9.0 Hz, 1H), 6.91 (d, *J* = 9.0 Hz, 1H), 3.85 (s, 2H), 3.73 (s, 3H).

¹³C NMR (100 MHz, DMSO-*d*₆) δ 160.9, 156.1, 131.9, 121.3, 116.5, 114.5, 55.6, 27.0.

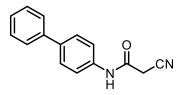
HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₀H₁₁N₂O₂ 191.0815; found: 191.0819.


N-(4-(tert-butyl)phenyl)-2-cyanoacetamide (4)

The title compound was prepared following the general procedure, purification by column chromatography on silica gel (petroleum ether/EtOAc = 2:1) yield (59 mg, 92%) as a white solid. <u>**HNMR (400 MHz, DMSO-d_6)**</u> δ 10.22 (s, 1H), 7.46 (d, *J* = 8.4 Hz, 1H), 7.34 (d, *J* = 8.8 Hz, 2H), 3.87 (s, 2H), 1.26 (s, 9H).

¹³C NMR (100 MHz, DMSO-d₆) δ 161.2, 146.7, 136.3, 126.0, 119.5, 116.5, 34.5, 31.6, 27.1.
 HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₃H₁₇N₂O 217.1335; found: 217.1330.

2-Cyano-N-(4-phenoxyphenyl)acetamide (5)

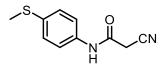

The title compound was prepared following the general procedure, purification by column chromatography on silica gel (petroleum ether/EtOAc = 1:1) yield (67 mg, 89%) as a white solid.

¹<u>H NMR (400 MHz, DMSO-*d*₆)</u> δ 10.34 (s, 1H), 7.59 (d, *J* = 8.8 Hz, 1H), 7.45 – 7.34 (m, 2H), 7.11 (t, *J* = 7.2 Hz, 1H), 7.05 – 6.95 (m, 4H), 3.91 (s, 2H).

¹³C NMR (100 MHz, DMSO-d₆) δ 161.3, 157.6, 152.8, 134.6, 130.4, 123.6, 121.5, 119.9, 118.5, 116.4, 27.1.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₅H₁₃N₂O₂ 253.0972; found: 253.0970.

N-([1,1'-biphenyl]-4-yl)-2-cyanoacetamide (6)


The title compound was prepared following the general procedure, purification by column chromatography on silica gel (petroleum ether/EtOAc = 2:1) yield (62 mg, 88%) as a white solid.

¹<u>H NMR (400 MHz, DMSO-*d*₆)</u> δ 10.43 (s, 1H), 7.74 – 7.61 (m, 6H), 7.44 (t, *J* = 7.6 Hz, 2H), 7.33 (t, *J* = 7.6 Hz, 1H), 3.96 (s, 2H).

¹³C NMR (100 MHz, DMSO-*d*₆) δ 161.5, 140.0, 138.3, 136.1, 129.4, 127.6, 127.6, 126.8, 120.1, 116.4, 27.3.

<u>HRMS (ESI-TOF) m/z</u>: $[M+H]^+$ Calcd. for C₁₅H₁₃N₂O 237.1022; found: 237.1020.

2-Cyano-N-(4-(methylthio)phenyl)acetamide (7)

The title compound was prepared following the general procedure, purification by column chromatography on silica gel (petroleum ether/EtOAc = 1:1) yield (50 mg, 81%) as a white solid. ¹<u>H NMR (400 MHz, DMSO-*d*₆)</u> δ 10.30 (s, 1H), 7.52 (d, *J* = 8.8 Hz, 2H), 7.25 (d, *J* = 8.8 Hz, 2H), 3.89 (s, 2H), 2.45 (s, 3H).

¹³C NMR (100 MHz, DMSO-d₆) δ 161.3, 136.2, 133.2, 127.5, 120.4, 116.4, 27.2, 15.8.
 HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₀H₁₁N₂OS 207.0587; found: 207.0595.

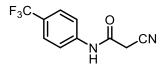
2-Cyano-*N*-(4-hydroxyphenyl)acetamide (8)

The title compound was prepared following the general procedure, purification by column chromatography on silica gel (petroleum ether/EtOAc = 2:3) yield (45 mg, 87%) as a white solid. <u>**H NMR (400 MHz, DMSO-***d*₆)</u> δ 10.03 (s, 1H), 9.28 (s, 1H), 7.33 (d, *J* = 8.8 Hz, 2H), 6.73 (d, *J* = 8.8 Hz, 2H), 3.82 (s, 2H).

¹³C NMR (100 MHz, DMSO-d₆) δ 160.7, 154.3, 130.4, 121.6, 116.6, 115.7, 26.9.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₉H₉N₂O₂ 177.0659; found: 177.0655.

N-(4-chlorophenyl)-2-cyanoacetamide (9)


The title compound was prepared following the general procedure, purification by column chromatography on silica gel (petroleum ether/EtOAc = 2:1) yield (53 mg, 92%) as a white solid.

¹<u>H NMR (400 MHz, DMSO-*d*₆)</u> δ 10.44 (s, 1H), 7.59 (d, *J* = 8.8 Hz, 1H), 7.39 (d, *J* = 8.8 Hz, 1H), 3.93 (s, 2H).

¹³C NMR (100 MHz, DMSO-d₆) δ 161.7, 137.8, 129.3, 128.0, 121.3, 116.2, 27.3.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₉H₈ClN₂O 195.0320; found: 195.0325.

2-Cyano-N-(4-(trifluoromethyl)phenyl)acetamide (10)

The title compound was prepared following the general procedure, purification by column chromatography on silica gel (petroleum ether/EtOAc = 2:1) yield (57 mg, 84%) as a white solid.

¹<u>H NMR (400 MHz, DMSO-*d*₆)</u> δ 10.67 (s, 1H), 7.78 (d, *J* = 8.4 Hz, 2H), 7.71 (d, *J* = 8.4 Hz, 2H), 3.99 (s, 2H).

¹³C NMR (100 MHz, DMSO-d₆) δ 162.3, 142.4, 126.7 (q, J = 3.9 Hz), 124.7 (q, J = 269.7 Hz), 124.4 (q, J = 31.9 Hz), 119.62, 116.12, 27.44.

¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -60.6.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₀H₈F₃N₂O 229.0583; found: 229.0586.

2-Cyano-N-(4-fluorophenyl)acetamide (11)

The title compound was prepared following the general procedure, purification by column chromatography on silica gel (petroleum ether/EtOAc = 2:1) yield (51 mg, 96%) as a white solid. <u>**HNMR (400 MHz, DMSO-***d*₆)</u> δ 10.35 (s, 1H), 7.83 – 7.44 (m, 2H), 7.32 – 7.02 (m, 2H), 3.89 (s, 2H). ¹³C NMR (100 MHz, DMSO-d₆) δ 161.4, 158.8 (d, J = 239.0 Hz), 135.2 (d, J = 2.7 Hz), 121.6 (d, J = 7.9 Hz), 116.3, 116.0 (d, J = 22.2 Hz), 27.1.

¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -118.5.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₉H₈FN₂O 179.0615; found: 179.0620.

2-Cyano-N-(4-cyanophenyl)acetamide (12)

The title compound was prepared following the general procedure, purification by column chromatography on silica gel (petroleum ether/EtOAc = 1:2) yield (59 mg, 92%) as a white solid. <u>**1H NMR (400 MHz, DMSO-***d*₆)</u> δ 10.73 (s, 1H), 7.81 (d, *J* = 8.8 Hz, 2H), 7.73 (d, *J* = 8.8 Hz, 2H), 3.99 (s, 2H).

¹³C NMR (100 MHz, DMSO-*d*₆) δ 162.5, 143.0, 133.9, 119.8, 119.3, 116.0, 106.2, 27.6.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₀H₈N₃O 186.0662; found: 186.0662.

N-(4-acetylphenyl)-2-cyanoacetamide (13)

The title compound was prepared following the general procedure, purification by column chromatography on silica gel (petroleum ether/EtOAc = 1:1) yield (53 mg, 88%) as a white solid. <u>**HNMR (400 MHz, DMSO-d_6)**</u> δ 10.63 (s, 1H), 7.96 (d, *J* = 8.8 Hz, 2H), 7.69 (d, *J* = 8.8 Hz, 2H), 3.97 (s, 2H), 2.54 (s, 3H).

¹³C NMR (100 MHz, DMSO-d₆) δ 197.0, 162.2, 143.1, 132.7, 130.0, 119.0, 116.2, 27.5, 26.9.
 HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₁H₁₁N₂O₂ 203.0815; found: 203.0815.

2-Cyano-N-(4-nitrophenyl)acetamide (14)

The title compound was prepared following the general procedure, purification by column chromatography on silica gel (petroleum ether/EtOAc = 1:2) yield (47 mg, 77%) as a white solid.

¹<u>H NMR (400 MHz, DMSO-*d*₆)</u> δ 10.90 (s, 1H), 8.25 (d, *J* = 9.2 Hz, 1H), 7.80 (d, *J* = 9.2 Hz, 1H), 4.02 (s, 2H).

13C NMR (100 MHz, DMSO-d₆) δ 162.7, 144.9, 143.1, 125.5, 119.5, 116.0, 27.6.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₉H₈N₃O₃ 206.0560; found: 206.0560.

2-Cyano-N-(m-tolyl)acetamide (15)

ı.

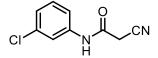
The title compound was prepared following the general procedure, purification by column chromatography on silica gel (petroleum ether/EtOAc = 2:1) yield (42 mg, 81%) as a white solid. <u>**HNMR (400 MHz, DMSO-d_6)**</u> δ 10.21 (s, 1H), 7.39 (s, 1H), 7.35 – 7.31 (m, 1H), 7.21 (t, *J* = 7.6 Hz, 1H), 6.96 – 6.90 (m, 1H), 3.88 (s, 2H), 2.28 (s, 3H).

¹³C NMR (100 MHz, DMSO-d₆) δ 161.4, 138.8, 138.6, 129.2, 125.1, 120.2, 116.9, 116.4, 27.2, 21.6.

<u>HRMS (ESI-TOF) m/z</u>: $[M+H]^+$ Calcd. for C₁₀H₁₁N₂O 175.0866; found: 175.0867.

2-Cyano-N-(3-methoxyphenyl)acetamide (16)

O CN


The title compound was prepared following the general procedure, purification by column chromatography on silica gel (petroleum ether/EtOAc = 1:1) yield (52 mg, 92%) as a white solid.

<u>¹H NMR (400 MHz, DMSO-*d*₆)</u> δ 10.27 (s, 1H), 7.24 – 7.20 (m, 2H), 7.10 – 7.05 (m, 1H), 6.73 – 6.65 (m, 1H), 3.89 (s, 2H), 3.73 (s, 3H).

¹³C NMR (100 MHz, DMSO-d₆) δ 161.5, 160.0, 140.0, 130.2, 116.3, 111.9, 109.7, 105.5, 55.5, 27.3.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₀H₁₁N₂O₂ 191.0815; found: 208.1088.

N-(3-chlorophenyl)-2-cyanoacetamide (17)

The title compound was prepared following the general procedure, purification by column

chromatography on silica gel (petroleum ether/EtOAc = 1:1) yield (52 mg, 90%) as a white solid.

<u>¹H NMR (400 MHz, DMSO-*d*₆)</u> δ 10.49 (s, 1H), 7.76 (s, 1H), 7.46 – 7.34 (m, 2H), 7.22 – 7.12 (m, 1H), 3.94 (s, 2H).

¹³C NMR (100 MHz, DMSO-d₆) δ 162.0, 140.2, 133.7, 131.1, 124.1, 119.2, 118.1, 116.2, 27.3.
 <u>HRMS (ESI-TOF) m/z</u>: [M+H]⁺ Calcd. for C₉H₈ClN₂O 195.0320; found: 195.0325.

2-Cyano-*N*-(*o*-tolyl)acetamide (18)

The title compound was prepared following the general procedure, purification by column chromatography on silica gel (petroleum ether/EtOAc = 2:1) yield (38 mg, 73%) as a white solid.

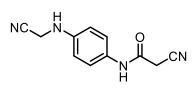
<u>¹H NMR (400 MHz, DMSO-*d*₆)</u> δ 9.65 (s, 1H), 7.39 (d, *J* = 8.0 Hz, 1H), 7.29 – 7.04 (m, 3H), 3.92 (s, 2H), 2.20 (s, 3H).

¹³C NMR (100 MHz, DMSO-d₆) δ 161.7, 136.0, 132.2, 130.9, 126.6, 126.2, 125.4, 116.6, 26.5, 18.2.

<u>**HRMS (ESI-TOF) m/z</u>**: $[M+H]^+$ Calcd. for C₁₀H₁₁N₂O 175.0866; found: 175.0868.</u>

N-(2-chlorophenyl)-2-cyanoacetamide (19)

The title compound was prepared following the general procedure, purification by column chromatography on silica gel (petroleum ether/EtOAc = 2:1) yield (40 mg, 69%) as a white solid.


¹<u>H NMR (400 MHz, DMSO-*d*₆)</u> δ 9.95 (s, 1H), 7.72 (d, *J* = 1.6 Hz, 1H), 7.52 (dd, *J* = 8.0, 1.6 Hz,

1H), 7.41 – 7.32 (m, 1H), 7.27 – 7.17 (m, 1H), 4.01 (s, 2H).

¹³C NMR (101 MHz, DMSO) δ 162.2, 134.6, 130.1, 128.1, 127.4, 127.1, 126.6, 116.3, 26.7.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₉H₈ClN₂O 195.0320; found: 195.0325.

2-Cyano-N-(4-((isocyanomethyl)amino)phenyl)acetamide (20)

The title compound was prepared following the general procedure, purification by column

chromatography on silica gel (petroleum ether/EtOAc = 1:2) yield (59 mg, 80%) as a white solid. ¹H NMR (400 MHz, DMSO- d_6) δ 10.02 (s, 1H), 7.35 (d, J = 8.8 Hz, 2H), 6.69 (d, J = 8.8 Hz, 2H), 6.15 (t, J = 6.8 Hz, 1H), 4.22 (d, J = 6.8 Hz, 2H), 3.82 (s, 2H).

¹³C NMR (101 MHz, DMSO) δ 160.6, 143.7, 129.9, 121.4, 119.1, 116.6, 113.7, 32.2, 26.9.

HRMS (ESI-TOF) m/z: $[M+H]^+$ Calcd. for $C_{11}H_{11}N_4O$ 215.0927; found: 215.0923.

2-Cyano-*N*-(naphthalen-2-yl)acetamide (21)

The title compound was prepared following the general procedure, purification by column chromatography on silica gel (petroleum ether/EtOAc = 2:1) yield (56 mg, 89%) as a white solid. ¹H NMR (400 MHz, DMSO-d₆) δ 10.54 (s, 1H), 8.29 (d, J = 2.0 Hz, 1H), 8.00 – 7.84 (m, 3H), 7.59 (dd, J = 8.8, 2.0 Hz, 1H), 7.54 – 7.47 (m, 1H), 7.46 – 7.40 (m, 1H), 4.01 (s, 2H). ¹³C NMR (100 MHz, DMSO-d₆) δ 161.8, 136.4, 133.8, 130.5, 129.1, 128.0, 127.9, 127.0, 125.4,

120.2, 116.4, 116.1, 27.4.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₃H₁₁N₂O 211.0866; found: 211.0880.

2-Cyano-N-(thiazol-2-yl)acetamide (22)

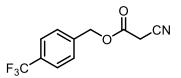
The title compound was prepared following the general procedure, purification by column chromatography on silica gel (petroleum ether/EtOAc = 1:1) yield (30 mg, 60%) as a white solid.

¹<u>H NMR (400 MHz, DMSO-*d*₆)</u> δ 12.45 (s, 1H), 7.50 (d, *J* = 3.6 Hz, 1H), 7.28 (d, *J* = 3.6 Hz, 1H), 4.04 (s, 2H).

¹³C NMR (100 MHz, DMSO-d₆) δ 162.2, 158.0, 138.2, 115.7, 114.6, 26.4.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₆H₆N₃OS 168.0226; found: 168.0229.

Benzyl 2-cyanoacetate (23)


The title compound was prepared following the general procedure, purification by column chromatography on silica gel (petroleum ether/EtOAc = 10:1) yield (44 mg, 85%) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.33 (m, 5H), 5.23 (s, 2H), 3.48 (s, 2H).
 ¹³C NMR (100 MHz, CDCl₃) δ 162.8, 134.3, 128.9, 128.8, 128.6, 112.9, 68.6, 24.8.
 <u>HRMS (ESI-TOF) m/z</u>: [M+H]⁺ Calcd. for C₁₀H₁₀NO₂ 176.0706; found: 176.0708.

4-Bromobenzyl 2-cyanoacetate (24)

The title compound was prepared following the general procedure, purification by column chromatography on silica gel (petroleum ether/EtOAc = 5:1) yield (64 mg, 85%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.45 (m, 2H), 7.34 – 7.19 (m, 2H), 5.17 (s, 2H), 3.49 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 162.8, 133.3, 132.0, 130.3, 123.1, 112.8, 67.7, 24.8. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₀H₉BrNO₂ 253.9811; found: 253.9812

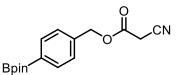
4-(Trifluoromethyl)benzyl 2-cyanoacetate (25)

The title compound was prepared following the general procedure, purification by column chromatography on silica gel (petroleum ether/EtOAc = 5:1) yield (59 mg, 82%) as a colorless oil. <u>**HNMR (400 MHz, CDCl3)**</u> δ 7.65 (d, *J* = 8.0 Hz, 2H), 7.50 (d, *J* = 8.0 Hz, 2H), 5.28 (s, 2H), 3.53 (s, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 162.7, 138.2 (q, J = 1.1 Hz), 131.0 (q, J = 32.4 Hz), 128.6, 125.8 (q, J = 3.8 Hz), 123.9 (q, J = 270.5 Hz), 112.7, 67.4, 24.7.

¹⁹F NMR (375 MHz, CDCl₃) δ -62.7.

HRMS (ESI-TOF) m/z: [M+H]+ Calcd. for C11H9F3NO2 244.0580; found: 244.0583


4-Fluorobenzyl 2-cyanoacetate (26)

The title compound was prepared following the general procedure, purification by column chromatography on silica gel (petroleum ether/EtOAc = 5:1) yield (45 mg, 78%) as a colorless oil. <u>**H NMR (400 MHz, CDCl_3)**</u> δ 7.42 – 7.32 (m, 2H), 7.14 – 6.96 (m, 2H), 5.19 (s, 2H), 3.48 (s, 2H). $\frac{^{13}\text{C NMR (100 MHz, CDCl_3)}}{^{13}\text{C NMR (100 MHz, CDCl_3)}} \delta 163.0 \text{ (d}, J = 246.5 \text{ Hz}), 162.82, 130.8 \text{ (d}, J = 8.4 \text{ Hz}), 130.3 \text{ (d}, J = 3.3 \text{ Hz}), 115.8 \text{ (d}, J = 21.7 \text{ Hz}), 112.9, 67.8, 24.8.}$

¹⁹F NMR (376 MHz, CDCl₃) δ -112.4.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₀H₉FNO₂ 194.0612; found: 194.0610

4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl 2-cyanoacetate (27)

The title compound was prepared following the general procedure, purification by column chromatography on silica gel (petroleum ether/EtOAc = 5:1) yield (61 mg, 68%) as a white solid. <u>**HNMR (400 MHz, CDCl_3)**</u> δ 7.82 (d, *J* = 8.0 Hz, 2H), 7.36 (d, *J* = 8.0 Hz, 2H), 5.23 (s, 2H), 3.48 (s, 2H), 1.34 (s, 12H).

¹³C NMR (100 MHz, CDCl₃) δ 162.8, 137.2, 135.2, 127.6, 112.9, 84.0, 68.4, 24.9, 24.8.

¹¹B NMR (128 MHz, CDCl₃) δ 30.5.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₆H₂₁BNO₄ 301.1594; found: 301.1599.

Phenethyl 2-cyanoacetate (28)

The title compound was prepared following the general procedure, purification by column chromatography on silica gel (petroleum ether/EtOAc = 10:1) yield (51 mg, 90%) as a colorless oil. <u>**IH NMR (400 MHz, CDCl3)</u> \delta 7.37 – 7.29 (m, 2H), 7.27 – 7.18 (m, 3H), 4.41 (t,** *J* **= 7.2 Hz, 2H), 3.40 (s, 2H), 2.98 (t,** *J* **= 7.2 Hz, 2H).</u>**

¹³C NMR (100 MHz, CDCl₃) δ 162.9, 136.9, 128.9, 128.7, 126.9, 113.0, 67.3, 34.8, 24.7.

<u>HRMS</u> (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₁H₁₂NO₂ 190.0863; found: 190.0868.

Furan-2-ylmethyl 2-cyanoacetate (29)

The title compound was prepared following the general procedure, purification by column chromatography on silica gel (petroleum ether/EtOAc = 1:1) yield (35 mg, 70%) as a colorless oil.

<u>¹H NMR (400 MHz, CDCl₃)</u> δ 7.44 (d, *J* = 1.2 Hz, 1H), 6.48 (d, *J* = 3.2 Hz, 1H), 6.38 (dd, *J* = 3.2, 1.6 Hz, 1H), 5.19 (s, 2H), 3.48 (s, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 162.7, 147.9, 143.9, 112.7, 111.9, 110.8, 60.0, 24.7.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₈H₈NO₃ 166.0499; found: 166.0497.

Thiophen-2-ylmethyl 2-cyanoacetate (30)

The title compound was prepared following the general procedure, purification by column chromatography on silica gel (petroleum ether/EtOAc = 1:1) yield (47 mg, 86%) as a colorless oil. <u>**1H NMR (400 MHz, CDCl_3)</u> \delta 7.36 (dd,** *J* **= 4.8, 1.2 Hz, 1H), 7.14 (dd,** *J* **= 3.6, 1.2 Hz, 1H), 7.00 (dd,** *J* **= 5.2, 3.6 Hz, 1H), 5.37 (s, 2H), 3.47 (s, 2H).</u>**

¹³C NMR (100 MHz, CDCl₃) δ 162.8, 136.0, 129.4, 127.8, 127.1, 112.9, 62.5, 24.8.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₈H₈NO₂S 182.0270; found: 182.0274.

Cyclododecyl 2-cyanoacetate (31)

The title compound was prepared following the general procedure, purification by column chromatography on silica gel (petroleum ether/EtOAc = 25:1) yield (70 mg, 93%) as a white solid. <u>**HNMR (400 MHz, CDCl_3)**</u> δ 5.26 – 4.97 (m, 1H), 3.43 (s, 2H), 2.00 – 1.71 (m, 2H), 1.61 – 1.48 (m, 2H), 1.54 – 1.19 (m, 18H).

¹³C NMR (100 MHz, CDCl₃) δ 162.6, 113.2, 75.9, 28.9, 25.0, 24.0, 23.8, 23.3, 23.1, 20.7.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₅H₂₆NO₂ 252.1958; found: 252.1954.

Cyclohexyl 2-cyanoacetate (32)

The title compound was prepared following the general procedure, purification by column chromatography on silica gel (petroleum ether/EtOAc = 10:1) yield (37 mg, 74%) as a colorless oil. <u>**H NMR (400 MHz, CDCl_3)**</u> δ 4.86 (tt, *J* = 9.2, 4.0 Hz, 1H), 3.44 (s, 2H), 1.94 – 1.84 (m, 2H), 1.79 - 1.69 (m, 2H), 1.58 - 1.39 (m, 4H), 1.37 - 1.23 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 162.4, 113.2, 75.9, 31.3, 25.1, 25.1, 23.5.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₉H₁₄NO₂ 168.1019; found: 168.1020.

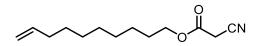
3-Methoxypropyl 2-cyanoacetate (33)

The title compound was prepared following the general procedure, purification by column chromatography on silica gel (petroleum ether/EtOAc = 5:1) yield (42 mg, 90%) as a colorless oil. <u>**H NMR (400 MHz, CDCl3)**</u> δ 4.31 (t, *J* = 6.8 Hz, 2H), 3.49 (s, 2H), 3.46 (t, *J* = 6.4 Hz, 2H), 3.33 (s, 3H), 1.95 (p, *J* = 6.4 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 163.0, 113.1, 68.6, 64.1, 58.7, 28.6, 24.7.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₇H₁₂NO₃ 158.0812; found: 158.0812.

6-Chlorohexyl 2-cyanoacetate (34)


The title compound was prepared following the general procedure, purification by column chromatography on silica gel (petroleum ether/EtOAc = 10:1) yield (53 mg, 88%) as a colorless oil. <u>**1H NMR (400 MHz, CDCl3)</u> \delta 4.22 (t,** *J* **= 6.8 Hz, 2H), 3.55 (t,** *J* **= 6.4 Hz, 2H), 3.47 (s, 2H), 1.84 - 1.75 (m, 2H), 1.71 (p,** *J* **= 6.8 Hz, 2H), 1.54 - 1.36 (m, 4H).</u>**

¹³C NMR (100 MHz, CDCl₃) δ 163.0, 113.1, 66.8, 44.9, 32.3, 28.2, 26.4, 25.1, 24.7.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₉H₁₅ClNO₂ 204.0786; found: 204.0787.

6-Bromohexyl 2-cyanoacetate (35)

The title compound was prepared following the general procedure, purification by column chromatography on silica gel (petroleum ether/EtOAc = 5:1) yield (67 mg, 91%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 4.22 (t, *J* = 6.8 Hz, 2H), 3.48 (s, 2H), 3.42 (t, *J* = 6.8 Hz, 2H), 1.93 – 1.83 (m, 2H), 1.78 – 1.64 (m, 2H), 1.56 – 1.45 (m, 2H), 1.45 – 1.31 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 163.0, 113.1, 66.8, 33.7, 32.5, 28.1, 27.6, 24.9, 24.8. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₉H₁₅BrNO₂ 248.0281; found: 248.0282. Dec-9-en-1-yl 2-cyanoacetate (36)

The title compound was prepared following the general procedure, purification by column chromatography on silica gel (petroleum ether/EtOAc = 25:1) yield (54 mg, 81%) as a colorless oil. <u>**IH NMR (400 MHz, CDCl3)</u></u> \delta 5.88 – 5.74 (m, 1H), 4.99 (dq,** *J* **= 17.2, 1.6 Hz, 1H), 4.95 – 4.88 (m, 1H), 4.20 (t,** *J* **= 6.8 Hz, 2H), 3.46 (s, 2H), 2.11 – 1.96 (m, 2H), 1.76 – 1.63 (m, 2H), 1.42 – 1.24 (m, 10H).</u>**

¹³C NMR (100 MHz, CDCl₃) δ 163.0, 139.1, 114.2, 113.1, 67.1, 33.8, 29.3, 29.1, 29.0, 28.9, 28.3, 25.7, 24.7.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₃H₂₂NO₂ 224.1645; found: 224.1643.

Pent-4-yn-1-yl 2-cyanoacetate (37)

The title compound was prepared following the general procedure, purification by column chromatography on silica gel (petroleum ether/EtOAc = 5:1) yield (34 mg, 75%) as a colorless oil.

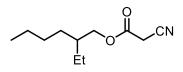
¹H NMR (400 MHz, CDCl₃) δ 4.34 (t, *J* = 6.4 Hz, 2H), 3.47 (s, 2H), 2.33 (td, *J* = 7.2, 2.8 Hz, 2H), 2.00 (t, *J* = 2.8 Hz, 1H), 1.92 (p, *J* = 6.8 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 162.8, 112.9, 82.4, 69.5, 65.4, 27.1, 24.7, 15.1.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₈H₁₀NO₂ 152.0706; found: 152.0705.

Butyl 2-cyanoacetate (38)

The title compound was prepared following the general procedure, purification by column chromatography on silica gel (petroleum ether/EtOAc = 5:1) yield (38 mg, 90%) as a colorless oil.


<u>¹H NMR (400 MHz, CDCl₃)</u> δ 4.22 (t, J = 6.4 Hz, 2H), 3.46 (s, 2H), 1.79 – 1.59 (m, 2H), 1.52 –

1.31 (m, 2H), 0.95 (t, *J* = 7.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 163.0, 113.1, 66.8, 30.3, 24.7, 18.9, 13.6.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₇H₁₂NO₂ 142.0863; found: 142.0863.

2-Ethylhexyl 2-cyanoacetate (39)

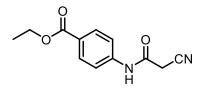
The title compound was prepared following the general procedure, purification by column chromatography on silica gel (petroleum ether/EtOAc = 5:1) yield (48 mg, 82%) as a colorless oil. <u>**1H NMR (400 MHz, CDCl_3)**</u> δ 4.13 (dd, J = 6.0, 2.8 Hz, 2H), 3.46 (s, 2H), 1.67 – 1.58 (m, 1H), 1.47 – 1.34 (m, 2H), 1.34 – 1.21 (m, 6H), 1.02 – 0.85 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 163.0, 113.0, 69.4, 38.6, 30.2, 28.8, 24.7, 23.6, 22.9, 14.0, 10.9.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₁H₂₀NO₂ 198.1489; found: 198.1485.

Octyl 2-cyanoacetate (40)

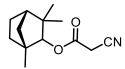
The title compound was prepared following the general procedure, purification by column chromatography on silica gel (petroleum ether/EtOAc = 5:1) yield (55 mg, 94%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 4.20 (t, J = 6.8 Hz, 2H), 3.46 (s, 2H), 1.75 – 1.62 (m, 2H), 1.45 – 1.22 (m, 10H), 0.89 (t, J = 6.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 163.0, 113.1, 67.1, 31.7, 29.1, 28.3, 25.7, 24.7, 22.6, 14.1.


HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₁H₂₀NO₂ 198.1489; found: 198.1485.

Octan-2-yl 2-cyanoacetate (41)

The title compound was prepared following the general procedure, purification by column chromatography on silica gel (petroleum ether/EtOAc = 10:1) yield (54 mg, 93%) as a colorless oil. <u>¹H NMR (400 MHz, CDCl₃)</u> δ 5.14 – 4.87 (m, 1H), 3.43 (s, 2H), 1.79 – 1.43 (m, 2H), 1.38 – 1.23 (m, 11H), 1.00 – 0.82 (m, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 162.6, 113.2, 74.6, 35.6, 31.6, 29.0, 25.2, 25.0, 22.5, 19.7, 14.0.
 <u>HRMS (ESI-TOF) m/z</u>: [M+H]⁺ Calcd. for C₁₁H₂₀NO₂ 198.1489; found: 198.1487.


Ethyl 4-(2-cyanoacetamido)benzoate (42)

The title compound was prepared following the general procedure, purification by column chromatography on silica gel (petroleum ether/EtOAc = 1:1) yield (54 mg, 78%) as a white solid. <u>**1H NMR (400 MHz, DMSO-***d*₆)</u> δ 10.63 (s, 1H), 7.95 (d, *J* = 8.4 Hz, 2H), 7.69 (d, *J* = 8.8 Hz, 2H), 4.29 (q, *J* = 6.8 Hz, 2H), 3.96 (s, 2H), 1.31 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, DMSO-d₆) δ 165.7, 162.2, 143.1, 130.8, 125.3, 119.1, 116.2, 61.0, 27.5, 14.7.
 <u>HRMS (ESI-TOF) m/z</u>: [M+H]⁺ Calcd. for C₁₂H₁₃N₂O₃ 233.0921; found: 233.0924.

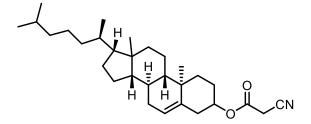
(1R,4S)-1,3,3-Trimethylbicyclo[2.2.1]heptan-2-yl 2-cyanoacetate (43)

The title compound was prepared following the general procedure, purification by column chromatography on silica gel (petroleum ether/EtOAc = 25:1) yield (59 mg, 75%) as a white solid. <u>**H NMR (400 MHz, CDCl_3)</u> \delta 4.45 (d,** *J* **= 2.0 Hz, 1H), 3.48 (s, 2H), 1.78 – 1.75 (m, 2H), 1.74 (d,** *J* **= 2.4 Hz, 1H), 1.63 – 1.57 (m, 1H), 1.54 – 1.43 (m, 1H), 1.29 – 1.21 (m, 1H), 1.18 – 1.13 (m, 1H), 1.11 (s, 3H), 1.07 (s, 3H), 0.83 (s, 3H).</u>**

¹³C NMR (100 MHz, CDCl₃) δ 163.2, 113.1, 89.3, 48.4, 48.2, 41.3, 39.7, 29.6, 26.4, 25.7, 24.7, 20.1, 19.3.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₃H₂₀NO₂ 222.1489; found: 222.1486.

(Z)-3,7-Dimethylocta-2,6-dien-1-yl 2-cyanoacetate (44)

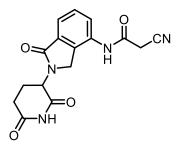

The title compound was prepared following the general procedure, purification by column chromatography on silica gel (petroleum ether/EtOAc = 1:1) yield (55 mg, 83%) as a colorless oil. <u>¹H NMR (400 MHz, CDCl₃)</u> δ 5.36 (td, J = 7.2, 1.6 Hz, 1H), 5.15 – 5.04 (m, 1H), 4.69 (d, J = 7.6 Hz, 2H), 3.45 (s, 2H), 2.26 – 2.02 (m, 4H), 1.78 (d, J = 1.5 Hz, 3H), 1.69 (s, 2H), 1.61 (d, J = 1.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 162.9, 144.4, 132.4, 123.3, 117.8, 113.1, 63.4, 32.2, 26.6, 25.7, 24.8, 23.5, 17.7.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₃H₂₀NO₂ 222.1489; found: 222.1482.

(8S,9S,10R,14S,17R)-10,13-Dimethyl-17-((R)-6-methylheptan-2-yl)-

2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl 2cyanoacetate (45)



The title compound was prepared following the general procedure, purification by column chromatography on silica gel (petroleum ether/EtOAc = 1:1) yield (0.2 mmol scale, 56 mg, 62%) as a white solid.

¹<u>H NMR (400 MHz, CDCl₃)</u> δ 5.39 (d, J = 4.8 Hz, 1H), 4.84 – 4.54 (m, 1H), 3.43 (s, 2H), 2.59 – 2.34 (m, 2H), 2.07 – 1.95 (m, 2H), 1.92 – 1.79 (m, 3H), 1.72 – 1.62 (m, 1H), 1.58 – 1.52 (m, 2H), 1.52 – 1.41 (m, 4H), 1.39 – 1.25 (m, 4H), 1.22 – 1.07 (m, 7H), 1.05 – 0.96 (m, 6H), 0.92 (d, J = 6.4 Hz, 3H), 0.87 (d, J = 1.6 Hz, 3H), 0.86 (d, J = 1.6 Hz, 3H), 0.68 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 162.3, 138.9, 123.4, 113.2, 56.7, 56.1, 50.0, 42.3, 39.7, 39.5, 37.8, 36.8, 36.5, 36.2, 35.8, 31.9, 31.8, 28.2, 28.0, 27.5, 25.1, 24.3, 23.8, 22.8, 22.6, 21.0, 19.3, 18.7, 11.9.
 HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₃₀H₄₈NO₂ 454.368; found: 454.3669.

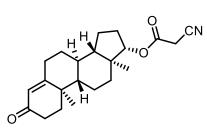
2-Cyano-N-(2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-4-yl)acetamide (46)

The title compound was prepared following the general procedure, purification by column chromatography on silica gel (EtOAc) yield (0.2 mmol scale, 60 mg, 92%) as a white solid. <u>**H NMR (400 MHz, DMSO-***d*₆) δ 11.04 (s, 1H), 10.21 (s, 1H), 7.82 (dd, *J* = 7.6, 1.2 Hz, 1H), 7.65</u> - 7.51 (m, 2H), 5.18 (dd, *J* = 13.2, 5.2 Hz, 1H), 4.64 - 4.24 (m, 2H), 3.97 (s, 2H), 3.12 - 2.84 (m, 1H), 2.72 - 2.58 (m, 1H), 2.35 (qd, *J* = 13.2, 4.4 Hz, 1H), 2.15 - 1.99 (m, 1H).

¹³C NMR (100 MHz, DMSO-d₆) δ 173.3, 171.6, 168.1, 161.9, 134.3, 133.3, 133.3, 129.4, 125.7,
 120.3, 116.3, 52.0, 46.8, 31.7, 26.8, 23.1.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₆H₁₅N₄O₄ 327.1088; found: 327.1089.

(1R,2S,5R)-2-Isopropyl-5-methylcyclohexyl 2-cyanoacetate (47)

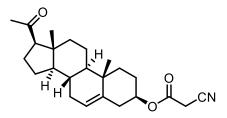

The title compound was prepared following the general procedure, purification by column chromatography on silica gel (petroleum ether/EtOAc = 20:1) yield (48 mg, 72%) as a white solid. <u>**IH NMR (400 MHz, CDCl_3)</u> \delta 4.77 (td,** *J* **= 10.8, 4.4 Hz, 1H), 3.44 (s, 2H), 2.10 – 1.98 (m, 1H), 1.93 – 1.80 (m, 1H), 1.77 – 1.66 (m, 2H), 1.58 – 1.39 (m, 2H), 1.14 – 1.00 (m, 2H), 0.96 – 0.86 (m, 6H), 0.77 (d,** *J* **= 6.8 Hz, 3H).</u>**

¹³C NMR (100 MHz, CDCl₃) δ 162.5, 113.2, 46.8, 40.5, 34.0, 31.4, 26.3, 25.0, 23.3, 21.9, 20.7, 16.2.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₃H₂₂NO₂ 224.1645; found: 224.1645.

(8R,9S,10R,13S,14S,17S)-10,13-Dimethyl-3-oxo-2,3,6,7,8,9,10,11,12,13,14,15,16,17-

tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl 2-cyanoacetate (48)

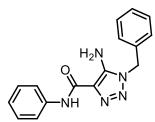


The title compound was prepared following the general procedure, purification by column chromatography on silica gel (petroleum ether/EtOAc = 2:1) yield (0.2 mmol scale, 51 mg, 72%) as a white solid.

<u>¹H NMR (400 MHz, CDCl₃)</u> δ 5.73 (d, *J* = 1.6 Hz, 1H), 4.68 (t, *J* = 9.2, 7.6 Hz, 1H), 3.46 (s, 2H), 2.51 – 2.16 (m, 5H), 2.10 – 1.97 (m, 1H), 1.92 – 1.79 (m, 2H), 1.76 – 1.54 (m, 5H), 1.50 – 1.33 (m, 2H), 1.30 – 1.16 (m, 4H), 1.12 – 0.92 (m, 3H), 0.89 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 199.4, 170.7, 162.8, 124.0, 113.1, 85.2, 53.6, 50.1, 42.8, 38.6, 36.5,
 35.7, 35.3, 33.9, 32.7, 31.4, 27.3, 24.9, 23.4, 20.5, 17.4, 12.0.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₂₂H₃₀NO₃ 356.2220; found: 356.2224.

(*3R*,8*R*,9*R*,10*S*,13*R*,14*R*,17*R*)-17-Acetyl-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl 2-cyanoacetate (49)

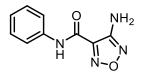


The title compound was prepared following the general procedure, purification by column chromatography on silica gel (petroleum ether/EtOAc = 1:1) yield (0.2 mmol scale, 59 mg, 64%) as a white solid.

¹<u>H NMR (400 MHz, CDCl₃)</u> δ 5.45 – 5.34 (m, 1H), 4.81 – 4.61 (m, 1H), 3.45 (s, 2H), 2.54 (t, J = 8.8 Hz, 1H), 2.42 – 2.35 (m, 2H), 2.24 – 2.16 (m, 1H), 2.13 (s, 3H), 2.09 – 1.96 (m, 2H), 1.95 – 1.86 (m, 2H), 1.76 – 1.41 (m, 8H), 1.32 – 1.10 (m, 3H), 1.05 – 0.98 (m, 4H), 0.63 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 209.5, 162.3, 138.9, 123.1, 113.1, 76.9, 63.6, 56.8, 49.8, 44.0, 38.7, 37.7, 36.8, 36.5, 31.8, 31.7, 31.6, 27.5, 25.1, 24.5, 22.8, 21.0, 19.3, 13.2.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₂₄H₃₄NO₃ 384.2533; found: 384.2533.

5-Amino-1-benzyl-*N*-phenyl-1*H*-1,2,3-triazole-4-carboxamide (50)

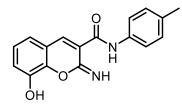


<u>¹H NMR (400 MHz, DMSO-*d*₆)</u> δ 10.05 (s, 1H), 7.82 (d, *J* = 8.0 Hz, 2H), 7.42 – 7.21 (m, 7H), 7.04 (t, *J* = 7.2 Hz, 1H), 6.61 (s, 2H), 5.49 (s, 2H).

¹³C NMR (100 MHz, DMSO-d₆) δ 161.2, 145.9, 139.5, 136.3, 129.1, 128.9, 128.2, 127.8, 123.5, 122.1, 120.4, 48.8.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₆H₁₆N₅O 294.1349; found: 294.1345.

4-Amino-N-phenyl-1,2,5-oxadiazole-3-carboxamide (51)


<u>¹H NMR (400 MHz, DMSO-*d*₆)</u> δ 10.98 (s, 1H), 7.79 (d, *J* = 8.0 Hz, 2H), 7.39 (t, *J* = 8.0 Hz, 2H),

7.17 (t, *J* = 7.2 Hz, 1H), 6.45 (s, 2H).

¹³C NMR (100 MHz, DMSO-d₆) δ 157.0, 156.6, 141.5, 138.2, 129.2, 125.1, 121.2.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₉H₉N₄O₂ 205.0720; found: 205.0722.

8-Hydroxy-2-imino-N-(p-tolyl)-2H-chromene-3-carboxamide (52)

 $\frac{^{1}\text{H NMR (400 MHz, DMSO-d_6)}}{J = 8.0 \text{ Hz}, 2\text{H}), 7.27 - 7.06 \text{ (m, 5H)}, 2.28 \text{ (s, 1H)}, 10.14 \text{ (s, 1H)}, 9.05 \text{ (s, 1H)}, 8.49 \text{ (s, 1H)}, 7.57 \text{ (d,}$

¹³C NMR (100 MHz, DMSO-d₆) δ 160.0, 156.4, 144.4, 142.4, 142.4, 136.3, 133.5, 129.9, 124.5, 120.5, 120.1, 120.0, 119.9, 21.0.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₇H₁₅N₂O₃ 295.1077; found: 295.1078.

(Z)-2-Cyano-3-hydroxy-N-(4-(trifluoromethyl)phenyl)but-2-enamide (53)

 F_3C

 $\frac{1}{1}$ H NMR (400 MHz, DMSO-*d*₆) δ 13.65 (s, 1H), 10.61 (s, 1H), 7.80 (d, *J* = 8.4 Hz, 2H), 7.68 (d, *J* = 8.4 Hz, 2H), 2.31 (s, 3H).

¹³C NMR (100 MHz, DMSO-d₆) δ 187.4, 166.9, 141.8, 126.3 (q, J = 3.8 Hz), 124.8 (q, J = 32.1 Hz), 124.6 (q, J = 269.8 Hz), 121.76, 118.08, 81.63, 23.18.

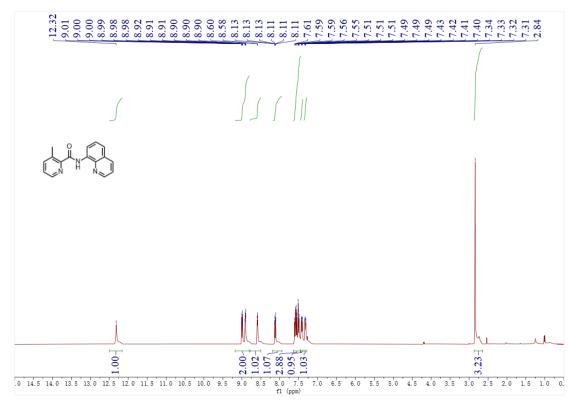
¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -60.5.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₂H₁₀F₃N₂O₂ 271.0689; found: 271.0688.

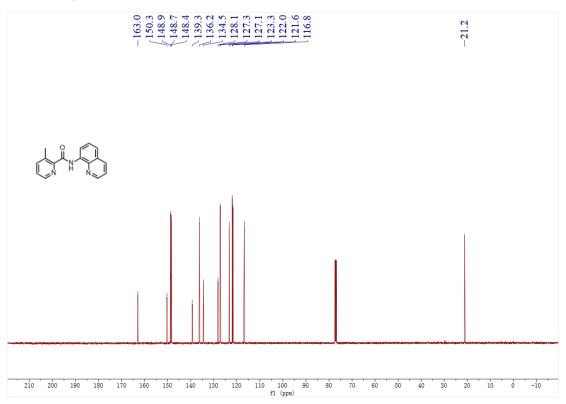
10. Reference

 [1] Zhang, Y.-T.; Cao, Q.-H.; Xi, Y.; Wu, X.-Q.; Qu, J.-P.; Chen, Y.-F. J. Am. Chem. Soc. 2024, 146, 7971–7978.

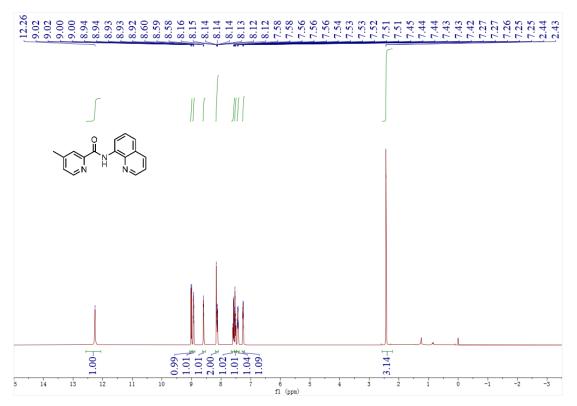
[2] Kiselyova, A. S.; Semenovab, M.; Semenov, V. V. (1,2,3-Triazol-4-yl)Benzenamines: Synthesis and Activity Against VEGF Receptors 1 and 2. *Bioorg. Med. Chem. Lett.* **2009**, *19*, 1344–1348.

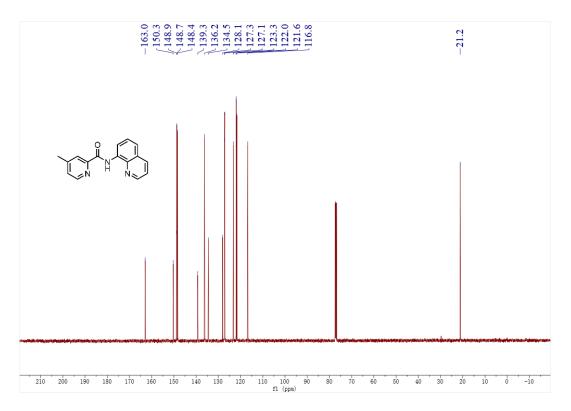

[3] Neel, A. J.; Zhao, R. Mild Synthesis of Substituted 1,2,5-Oxadiazoles Using 1,1'-Carbonyldiimidazole as a Dehydrating Agent. *Org. Lett.* **2018**, *20*, 2024–2027.

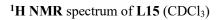
[4] Endo, S.; Oguri, H.; Segawa, J.; Kawai, M.; Hu, D.-W.; Xia, S.; Okada, T.; Irie, K.; Fujii, S.; Gouda, H.; Iguchi, K.; Matsukawa, T.; Fujimoto, N.; Nakayama, T.; Toyooka, N.; Matsunaga, T.; Ikari, A. Development of Novel AKR1C3 Inhibitors as New Potential Treatment for Castration-Resistant Prostate Cancer. *J. Med. Chem.* **2020**, *63*, 10396–10411.

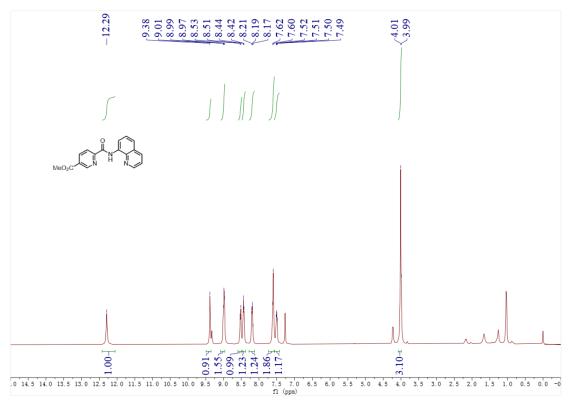

[5] Gerndt, S.; Chen, C. C.; Chao, Y. K.; Yuan, Y.; Burgstaller, S.; Rosato, S. A.; Krogsaeter, E.;
Urban, N.; Jacob, K.; Nguyen, O. N. P.; Miller, M. T.; Keller, M.; Vollmar, A. M.; Gudermann, T.;
Zierler, S.; Schredelseker, J.; Schaefer, M.; Biel, M.; Malli, R.; Wahl-Schott, C.; Bracher, F.; Patel,
S.; Grimm, C. *eLife*, **2020**, *9*, e54712.

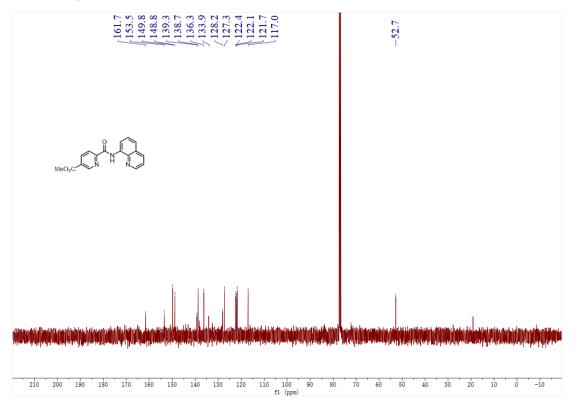
11. Spectra of compounds

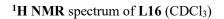


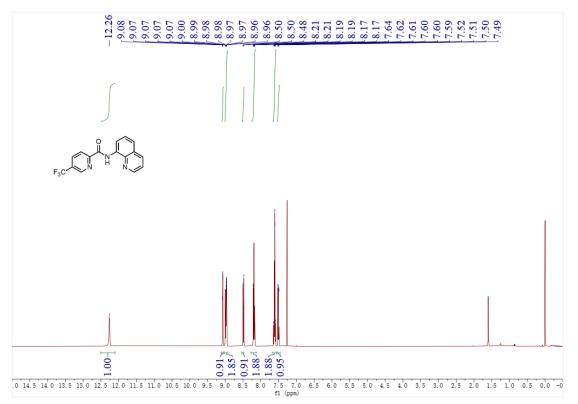

¹³C NMR spectrum of L12 (CDCl₃)

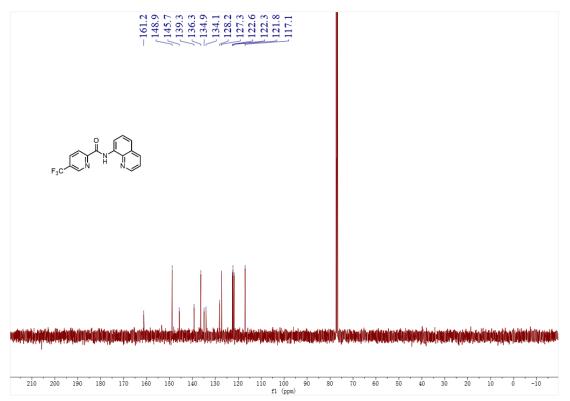


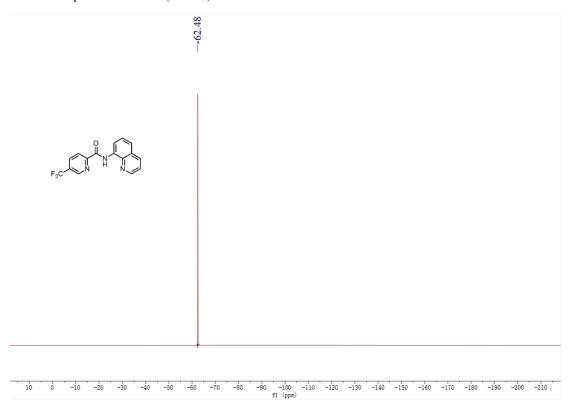

¹H NMR spectrum of L13 (CDCl₃)

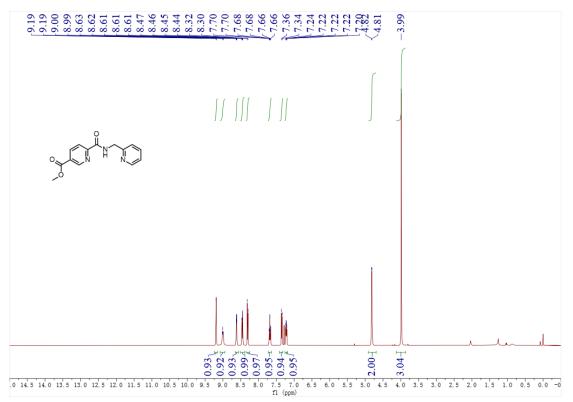

¹³C NMR spectrum of L13 (CDCl₃)

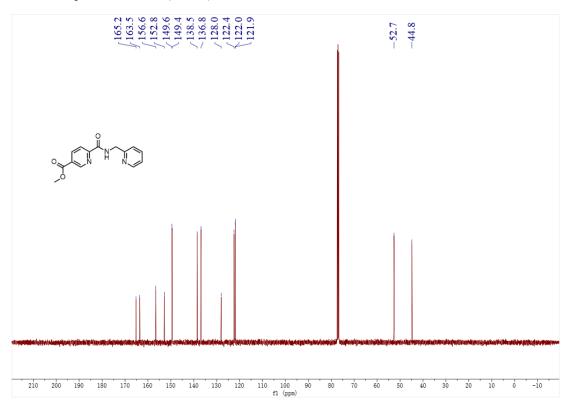


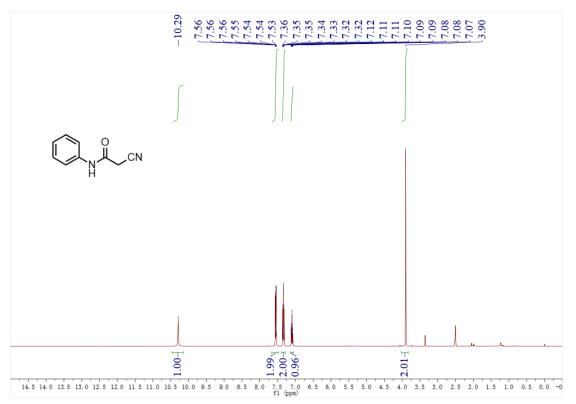


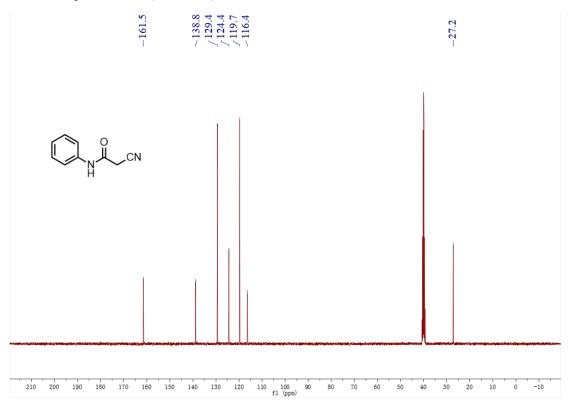

¹³C NMR spectrum of L15 (CDCl₃)

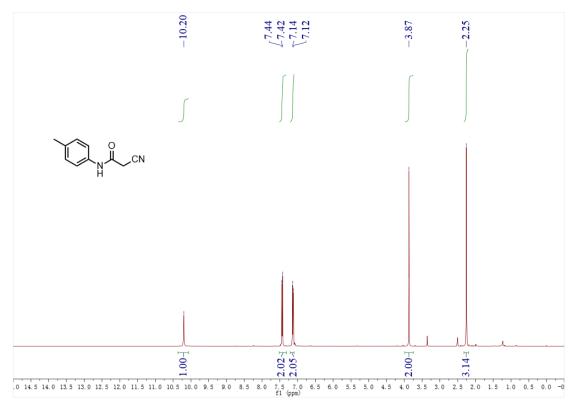


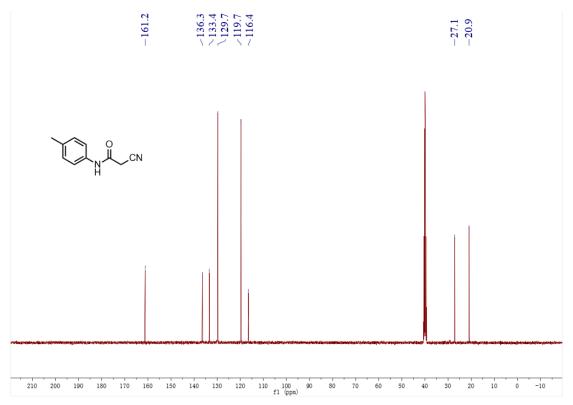

¹³C NMR spectrum of L16 (CDCl₃)

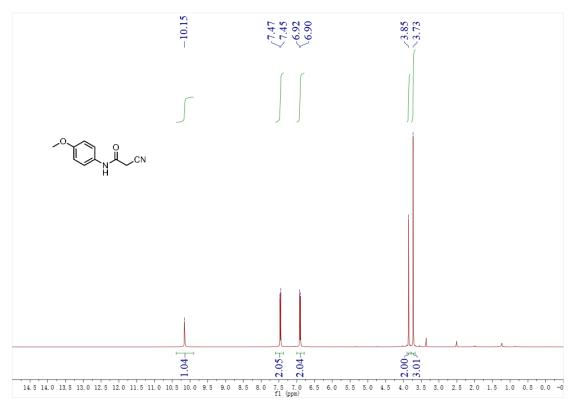

¹⁹F NMR spectrum of L16 (CDCl₃)

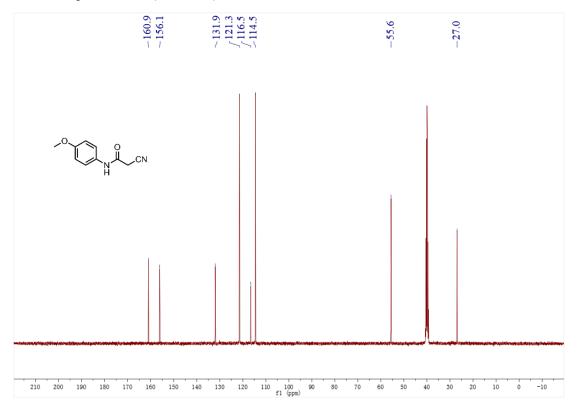

¹H NMR spectrum of L17 (CDCl₃)

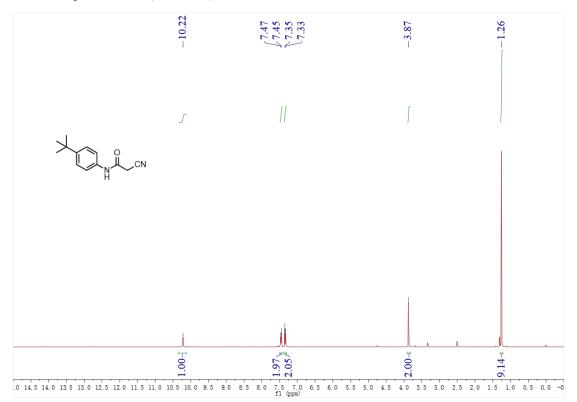

¹³C NMR spectrum of L17 (CDCl₃)

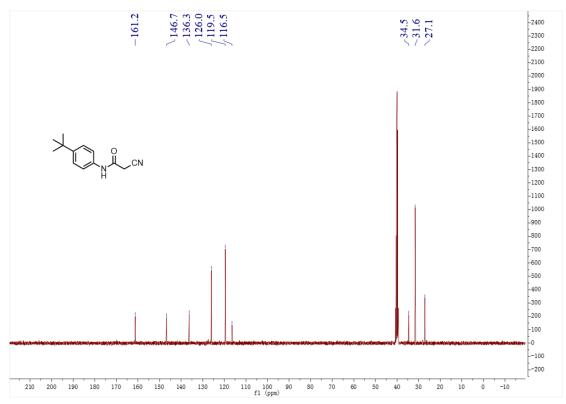

¹H NMR spectrum of 1 (DMSO-*d*₆)

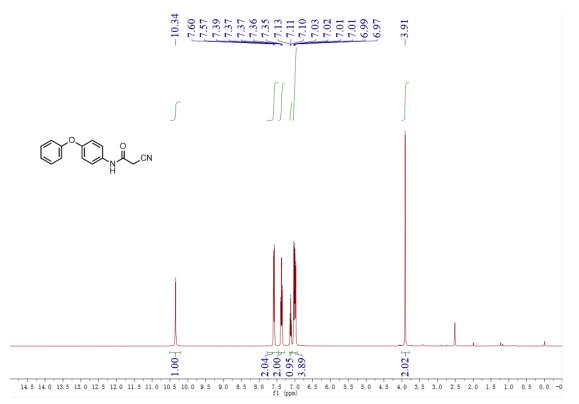

¹³C NMR spectrum of 1 (DMSO- d_6)

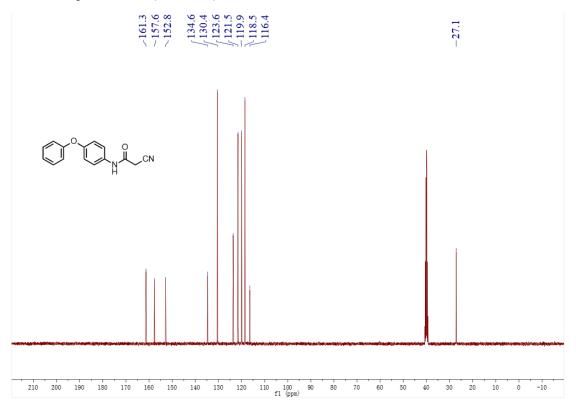

¹H NMR spectrum of 2 (DMSO- d_6)

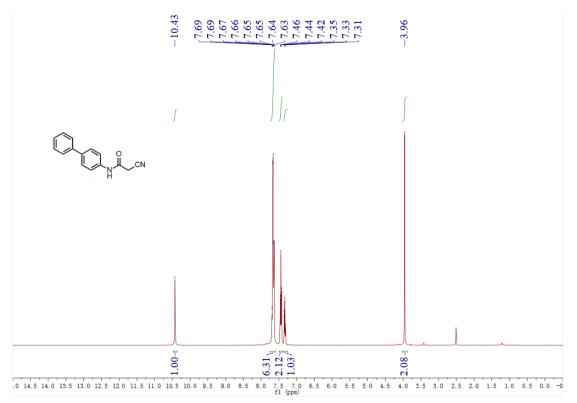

¹³C NMR spectrum of 2 (DMSO-*d*₆)

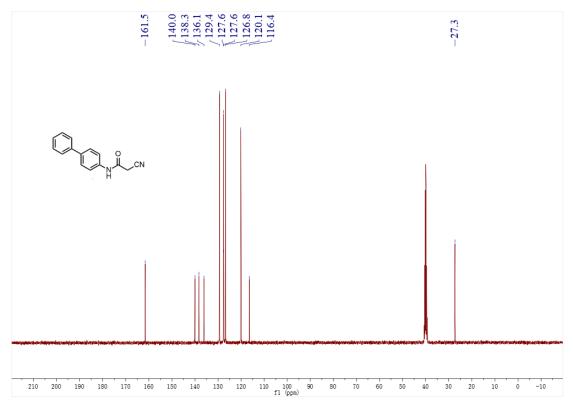

¹H NMR spectrum of **3** (DMSO-*d*₆)

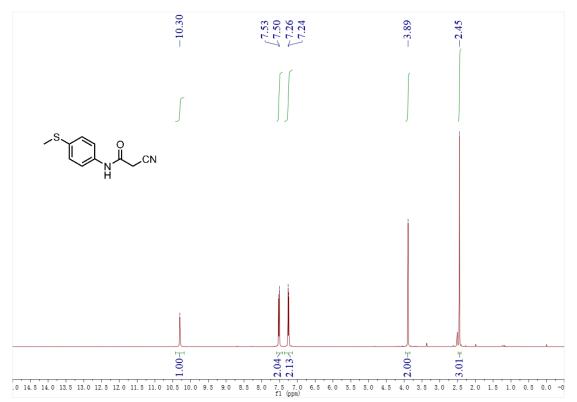

¹³C NMR spectrum of **3** (DMSO-*d*₆)

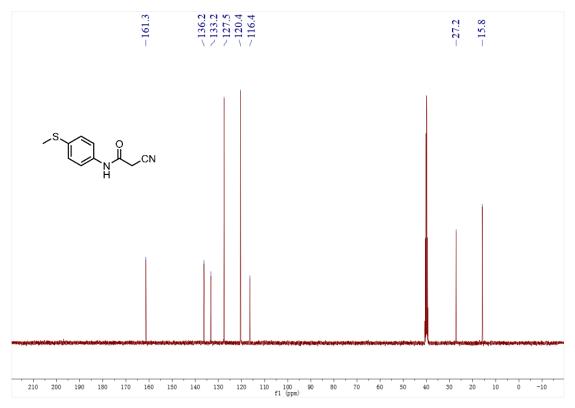

¹H NMR spectrum of 4 (DMSO-*d*₆)

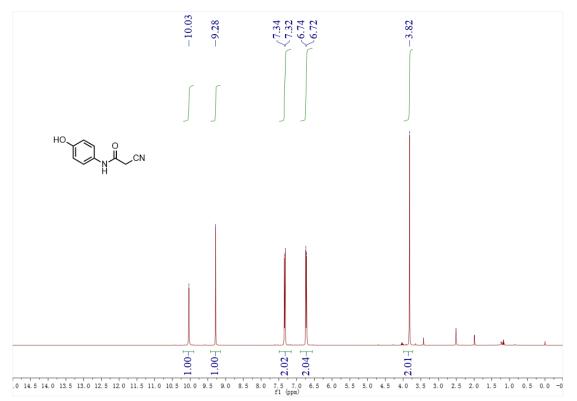

¹³C NMR spectrum of 4 (DMSO-*d*₆)

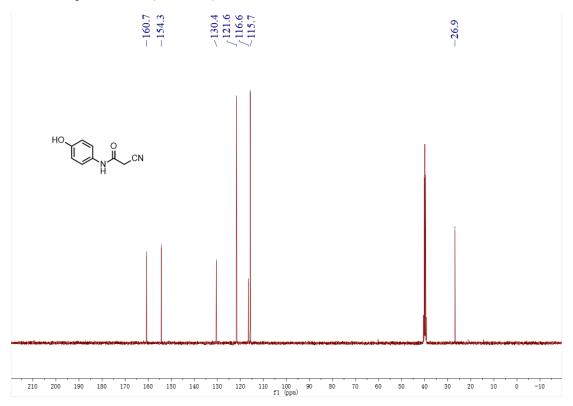

¹H NMR spectrum of **5** (DMSO-*d*₆)

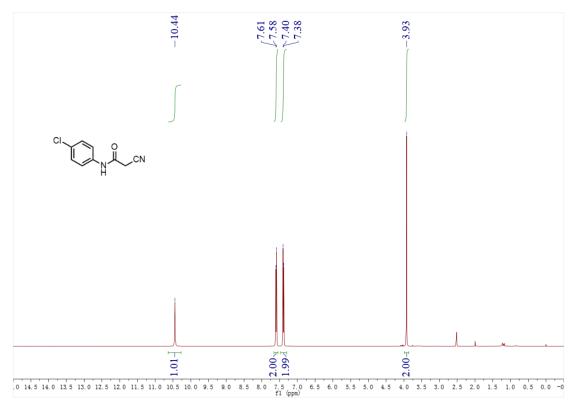

¹³C NMR spectrum of 5 (DMSO-*d*₆)

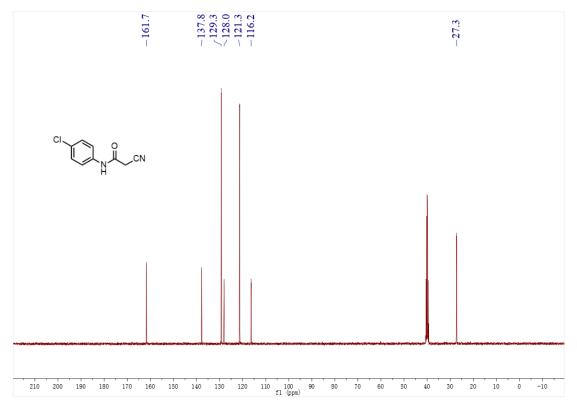

¹**H NMR** spectrum of **6** (DMSO- d_6)

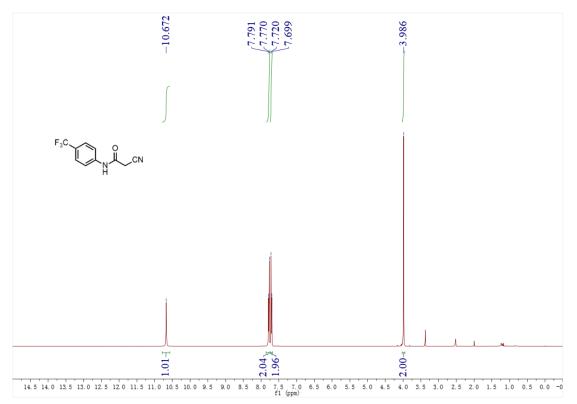

¹³C NMR spectrum of 6 (DMSO-*d*₆)

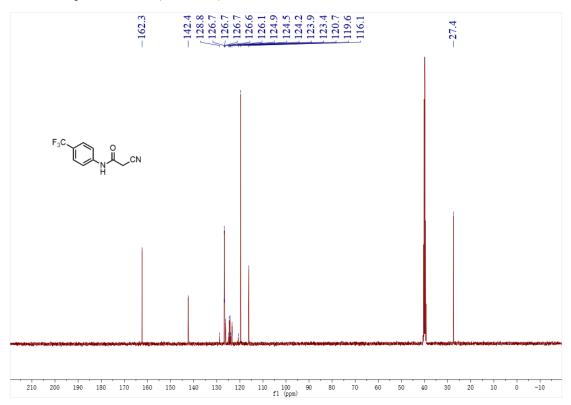

¹H NMR spectrum of 7 (DMSO-*d*₆)


¹³C NMR spectrum of 7 (DMSO-*d*₆)

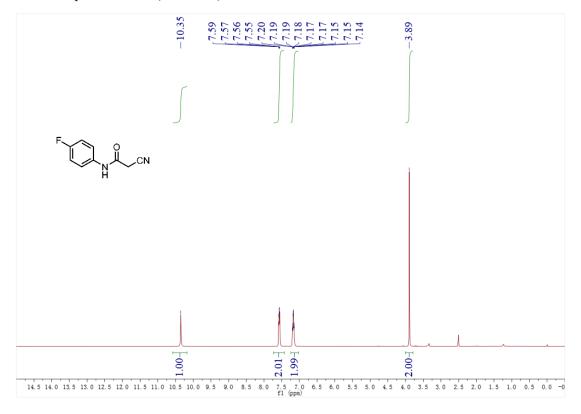

¹H NMR spectrum of 8 (DMSO-*d*₆)

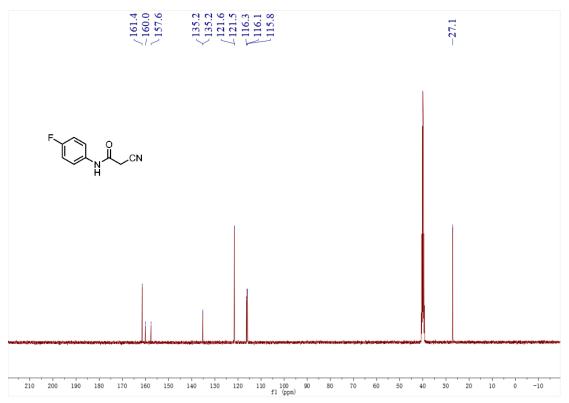

¹³C NMR spectrum of 8 (DMSO-*d*₆)

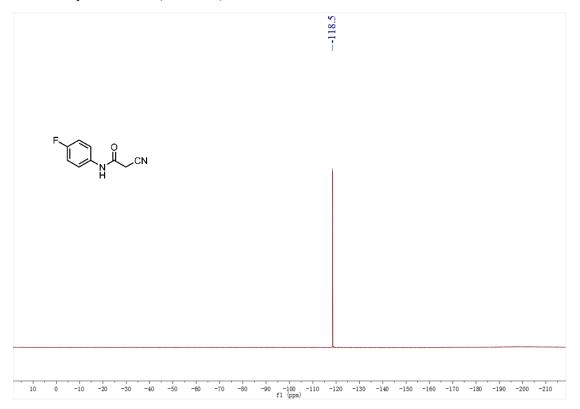

¹H NMR spectrum of 9 (DMSO-*d*₆)

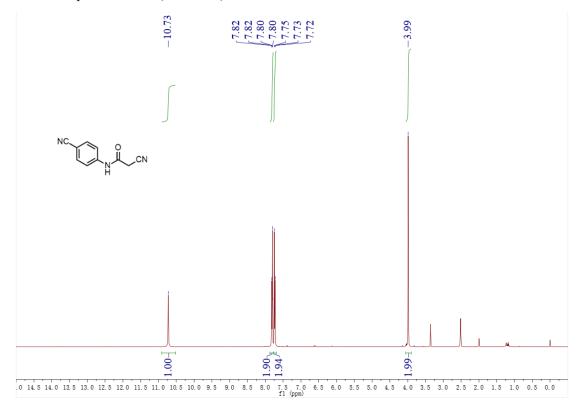

¹³C NMR spectrum of 9 (DMSO-*d*₆)

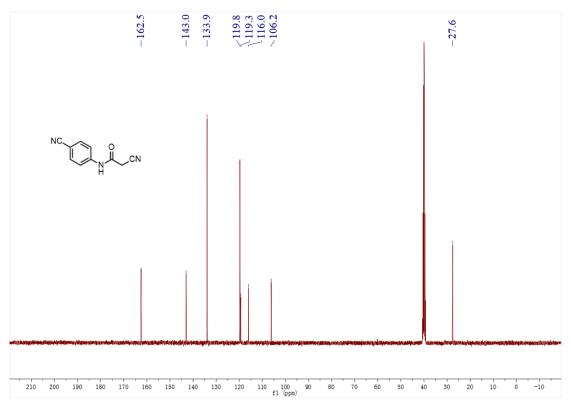
¹H NMR spectrum of **10** (DMSO-*d*₆)

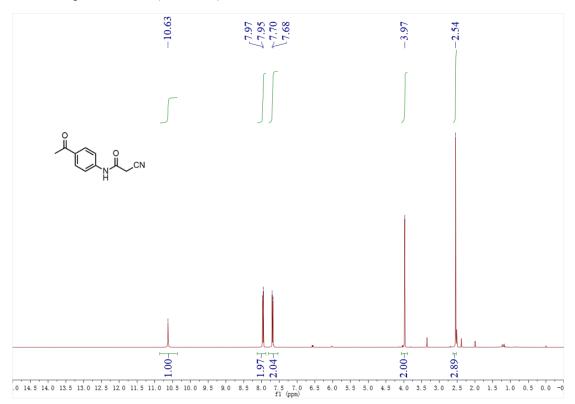

¹³C NMR spectrum of 10 (DMSO-*d*₆)


¹⁹F NMR spectrum of 10 (DMSO-*d*₆)

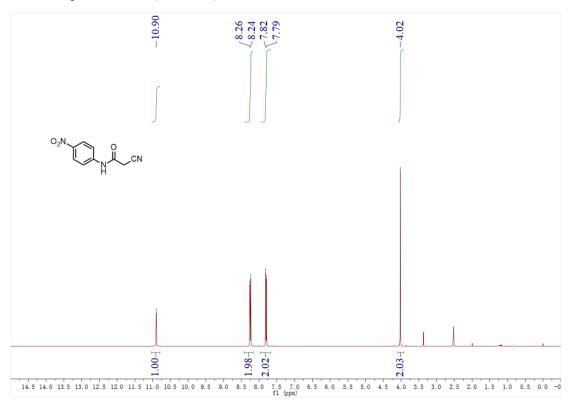

¹H NMR spectrum of **11** (DMSO-*d*₆)

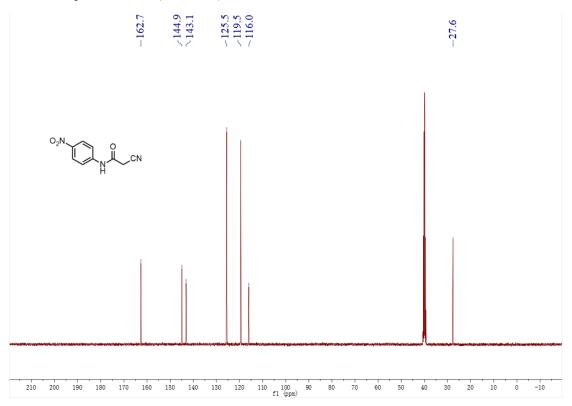

¹³C NMR spectrum of 11 (DMSO-*d*₆)

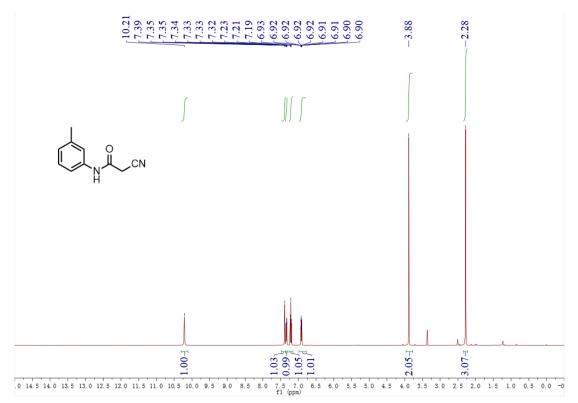

¹⁹F NMR spectrum of 11 (DMSO-*d*₆)

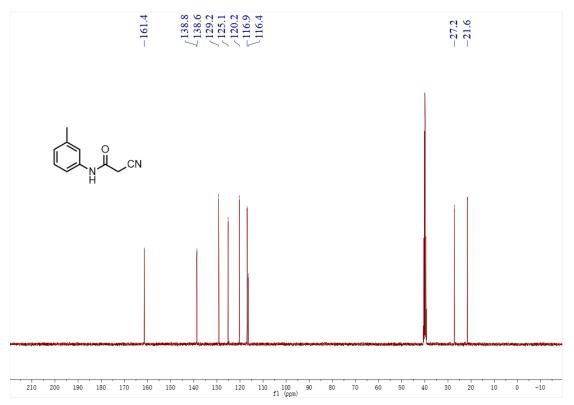

¹H NMR spectrum of **12** (DMSO-*d*₆)

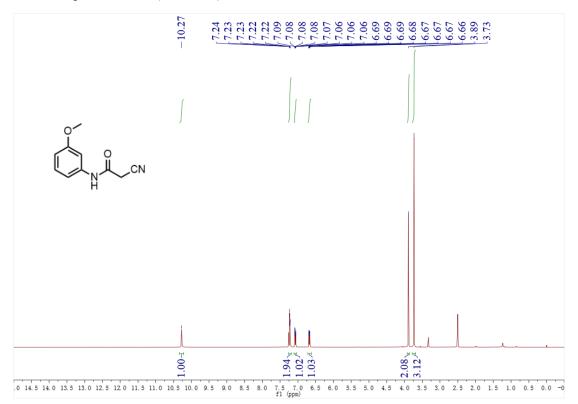
¹³C NMR spectrum of **12** (DMSO-*d*₆)

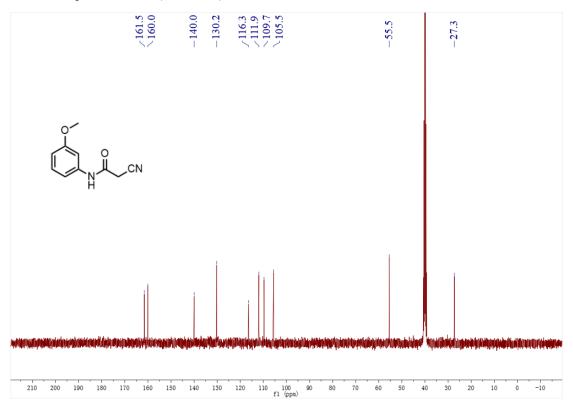

¹H NMR spectrum of **13** (DMSO-*d*₆)

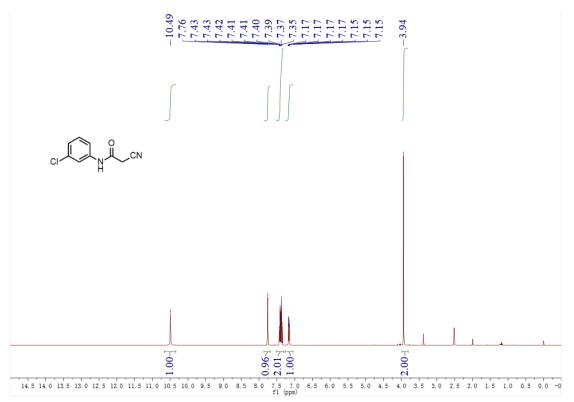

¹³C NMR spectrum of **13** (DMSO-*d*₆)

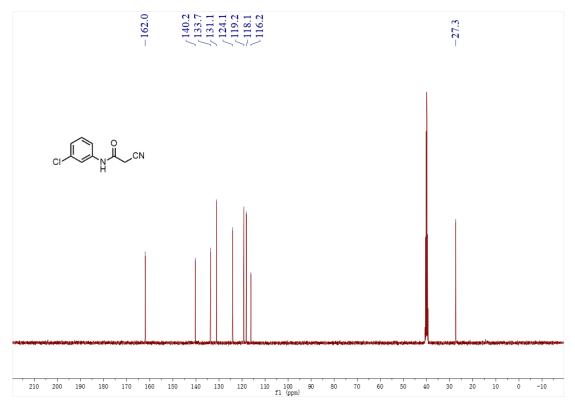

¹H NMR spectrum of 14 (DMSO-*d*₆)

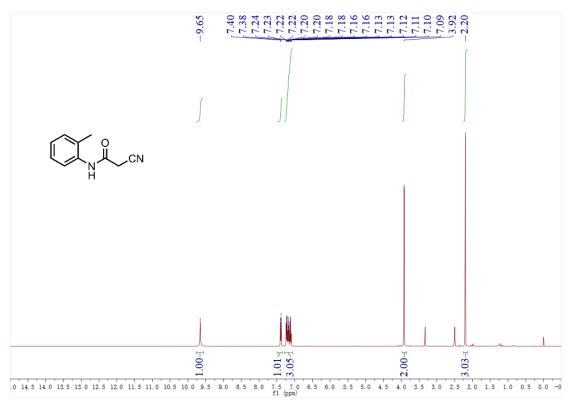

¹³C NMR spectrum of 14 (DMSO-*d*₆)

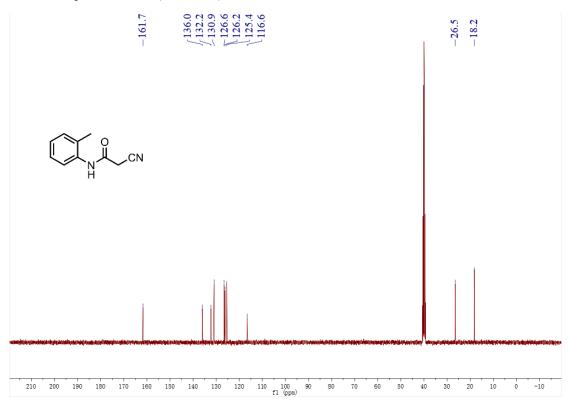

¹H NMR spectrum of 15 (DMSO-*d*₆)

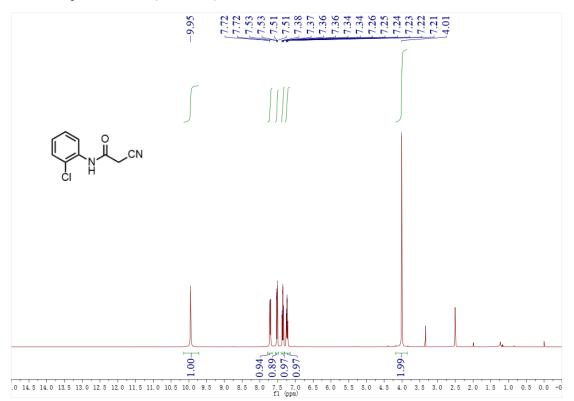

¹³C NMR spectrum of 15 (DMSO-*d*₆)

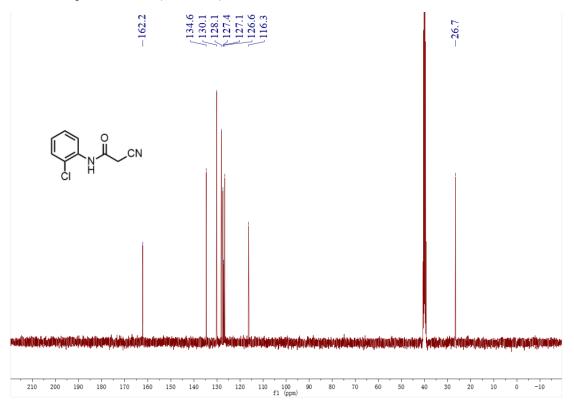

¹H NMR spectrum of 16 (DMSO-*d*₆)


¹³C NMR spectrum of 16 (DMSO-*d*₆)

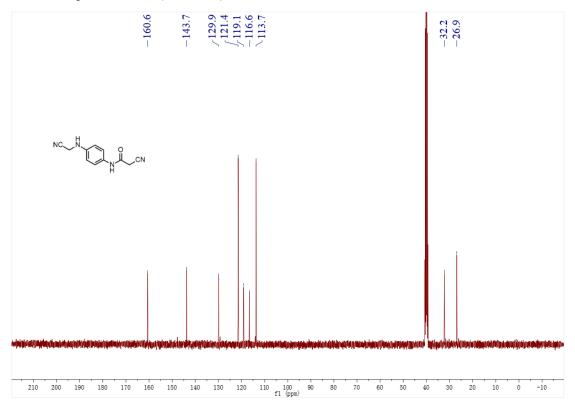

¹H NMR spectrum of 17 (DMSO-*d*₆)

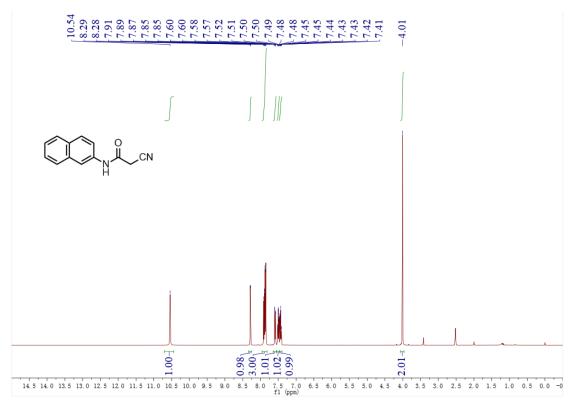

¹³C NMR spectrum of 17 (DMSO-*d*₆)

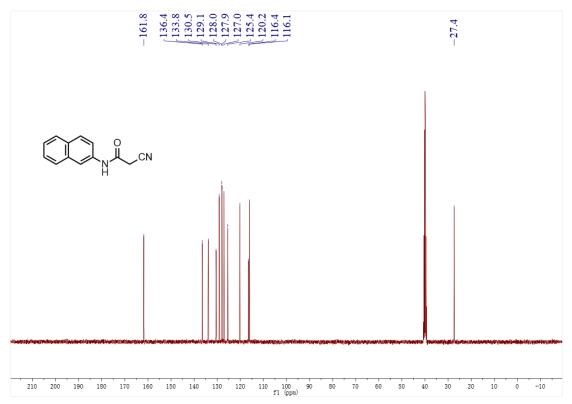

¹H NMR spectrum of 18 (DMSO-*d*₆)

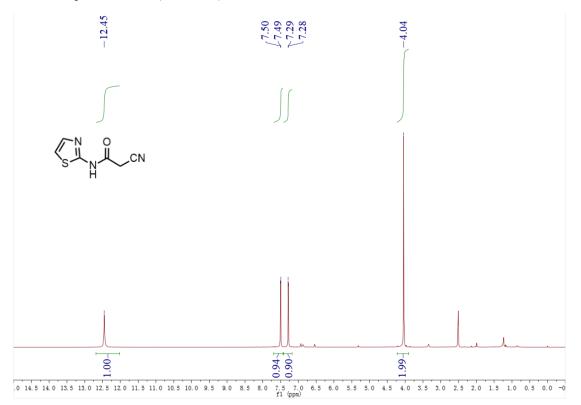

¹³C NMR spectrum of 18 (DMSO-*d*₆)

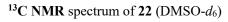

¹H NMR spectrum of **19** (DMSO-*d*₆)

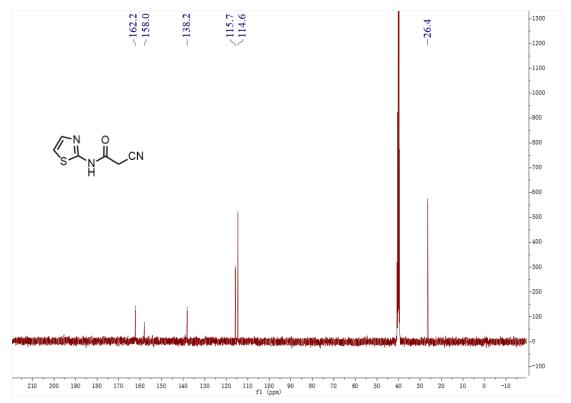

¹³C NMR spectrum of 19 (DMSO-*d*₆)

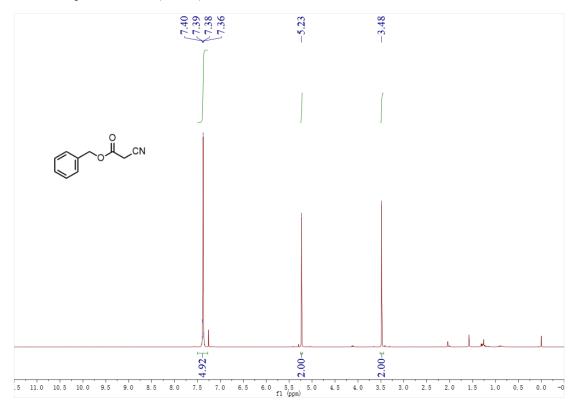

¹H NMR spectrum of **20** (DMSO-*d*₆)

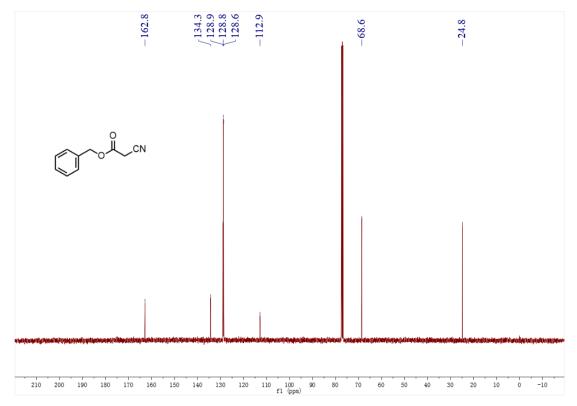

¹³C NMR spectrum of **20** (DMSO-*d*₆)

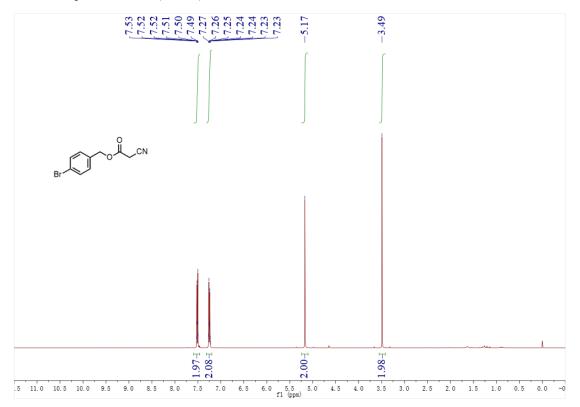

¹H NMR spectrum of **21** (DMSO-*d*₆)

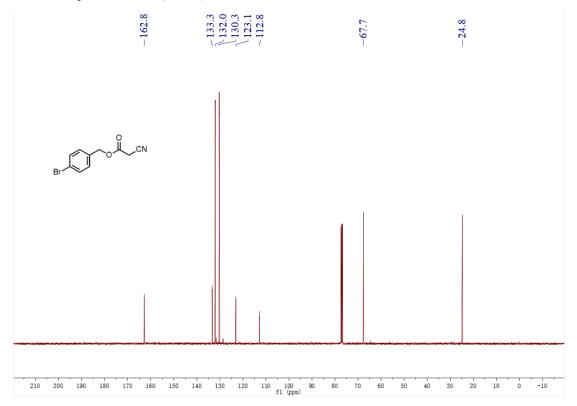


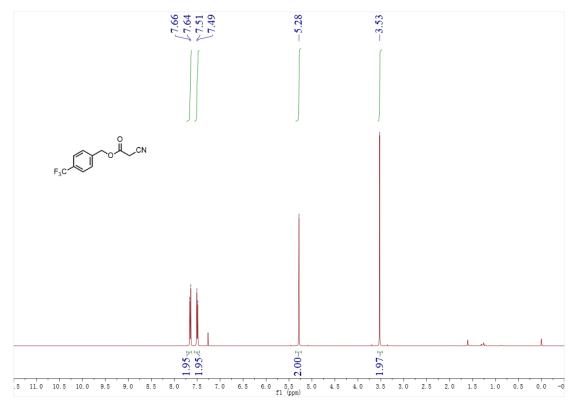

¹³C NMR spectrum of **21** (DMSO-*d*₆)

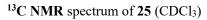

¹H NMR spectrum of **22** (DMSO-*d*₆)

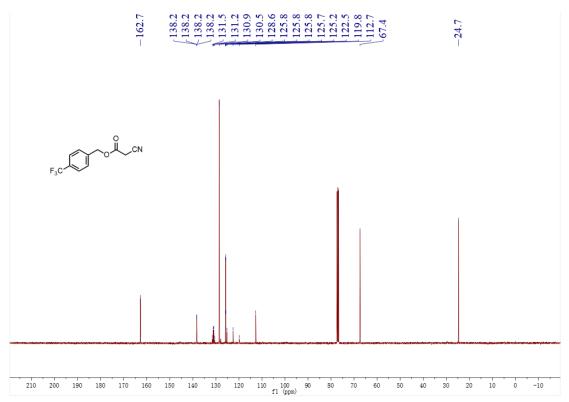


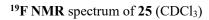

¹H NMR spectrum of **23** (CDCl₃)

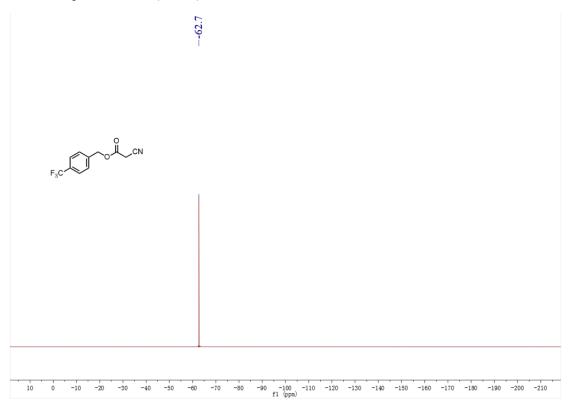

¹³C NMR spectrum of 23 (CDCl₃)

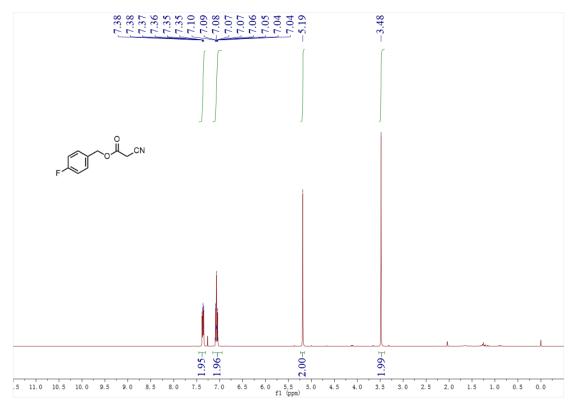

¹H NMR spectrum of **24** (CDCl₃)

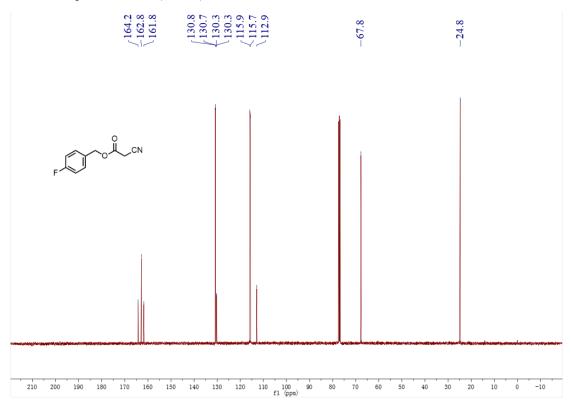


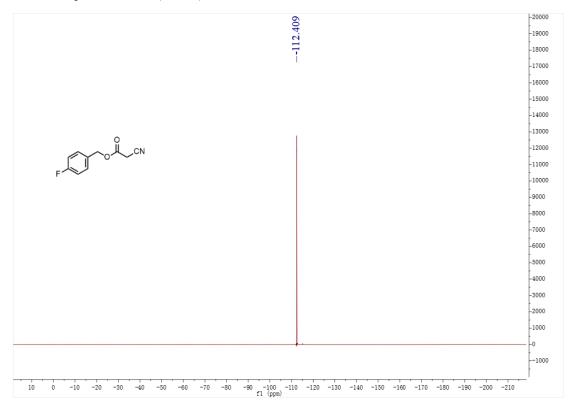

¹³C NMR spectrum of 24 (CDCl₃)

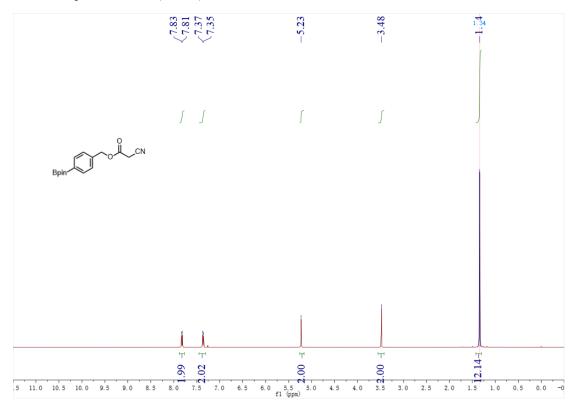


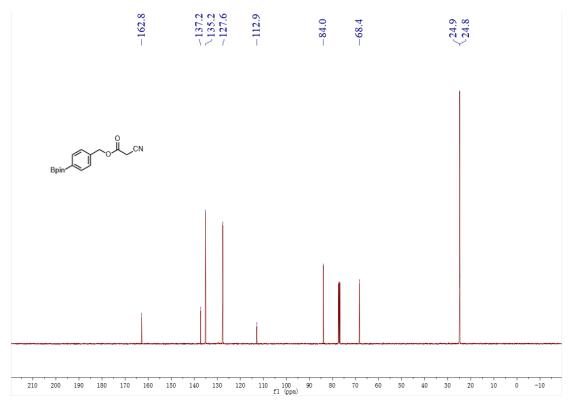

¹H NMR spectrum of **25**(CDCl₃)

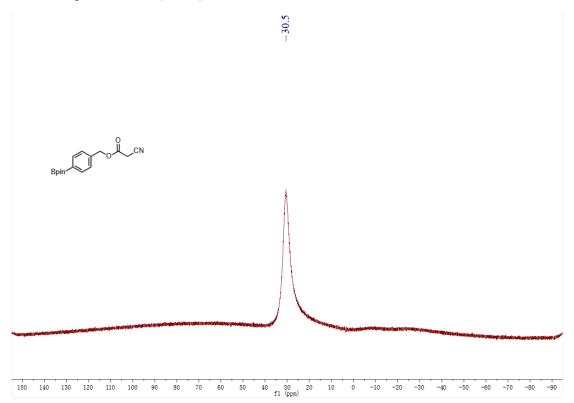


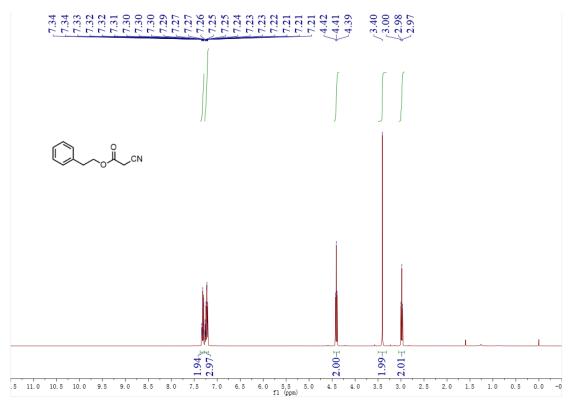


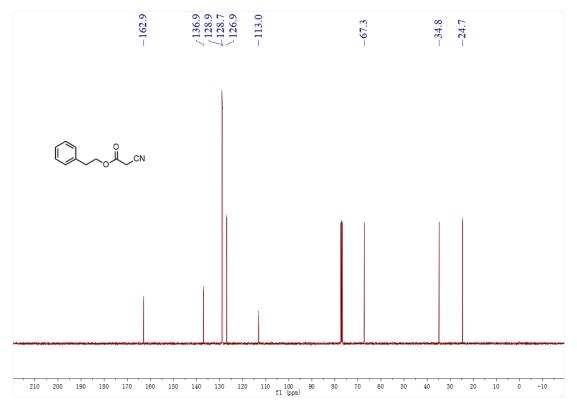

¹H NMR spectrum of **26** (CDCl₃)

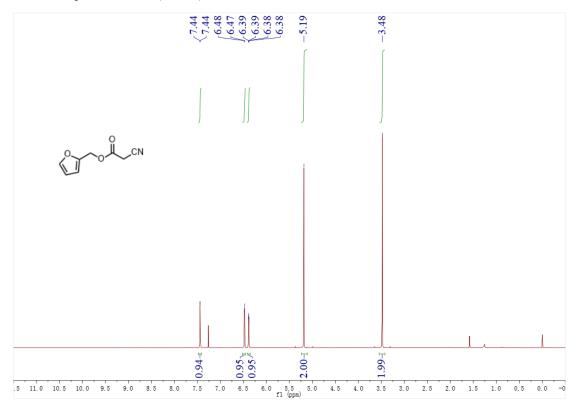

¹³C NMR spectrum of 26 (CDCl₃)

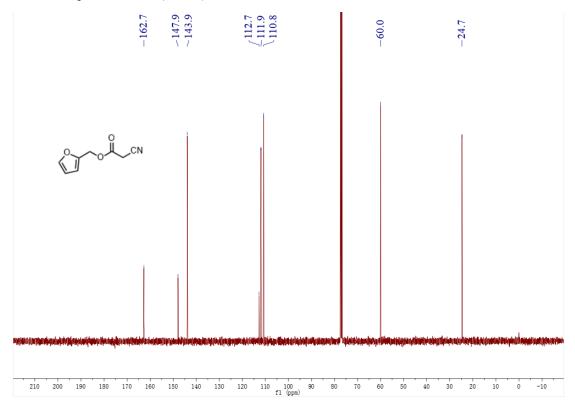

^{19}F NMR spectrum of $26~(\mathrm{CDCl}_3)$

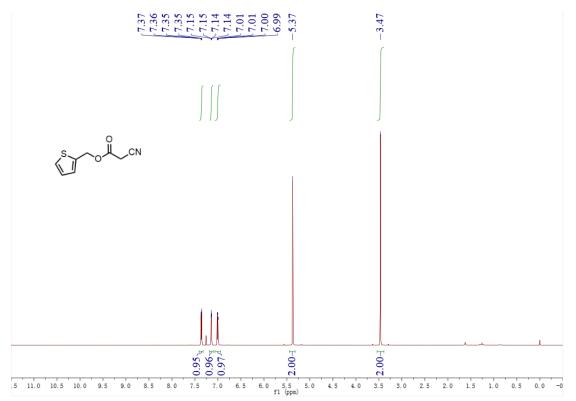

¹H NMR spectrum of **27** (CDCl₃)

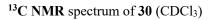

¹³C NMR spectrum of 27 (CDCl₃)

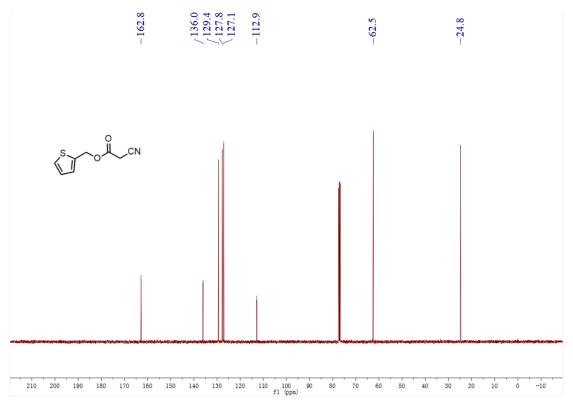

¹¹B NMR spectrum of 27 (CDCl₃)

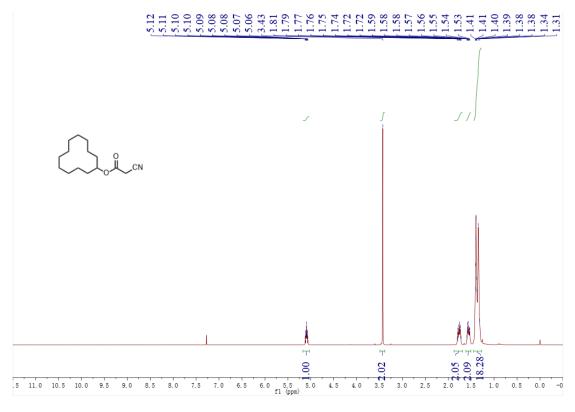

¹H NMR spectrum of **28** (CDCl₃)

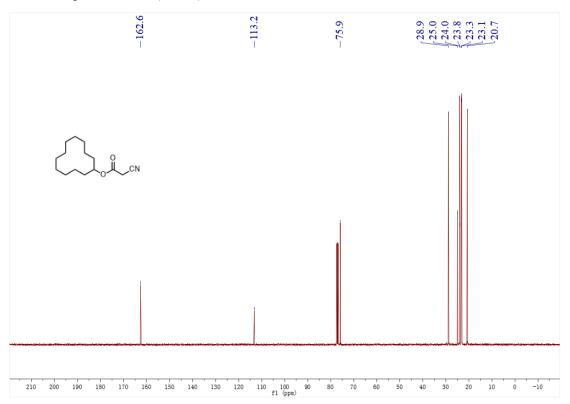

¹³C NMR spectrum of 28 (CDCl₃)

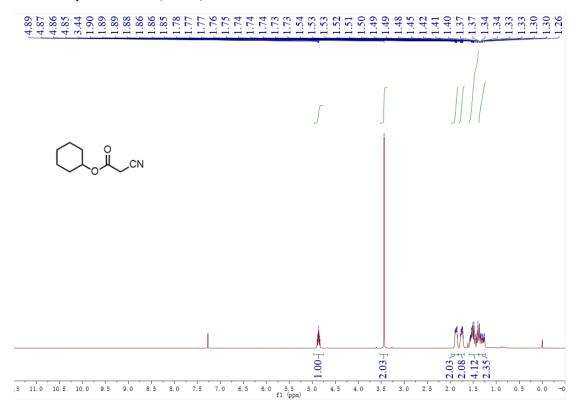

¹H NMR spectrum of **29** (CDCl₃)

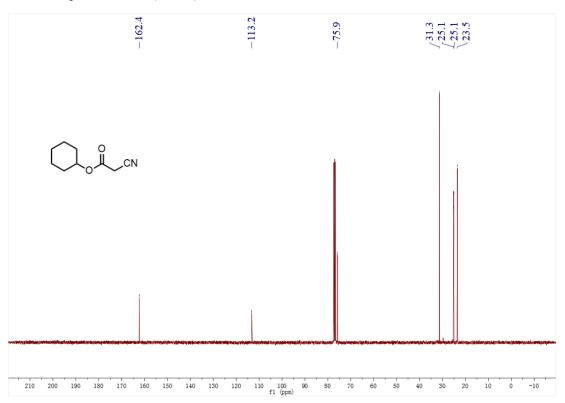


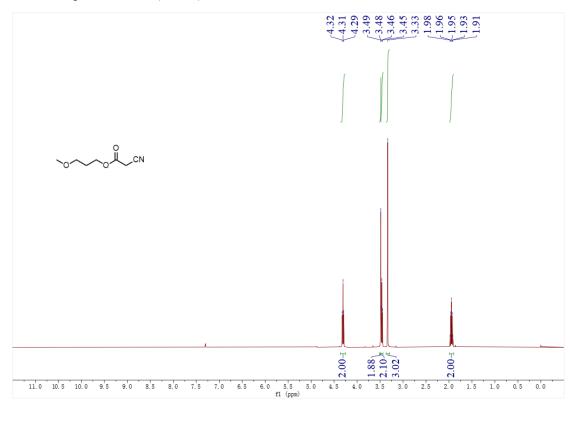

¹³C NMR spectrum of **29** (CDCl₃)


¹H NMR spectrum of **30** (CDCl₃)

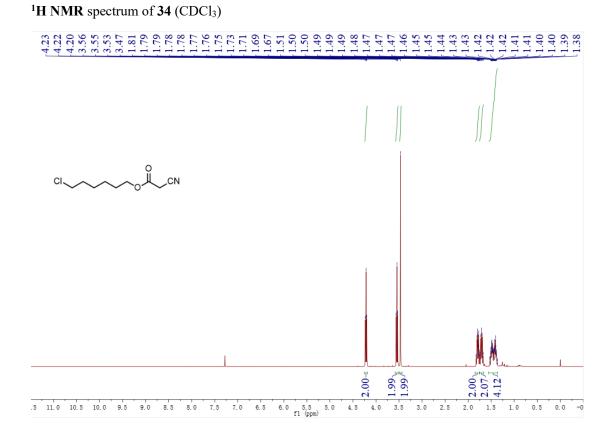



¹H NMR spectrum of **31** (CDCl₃)

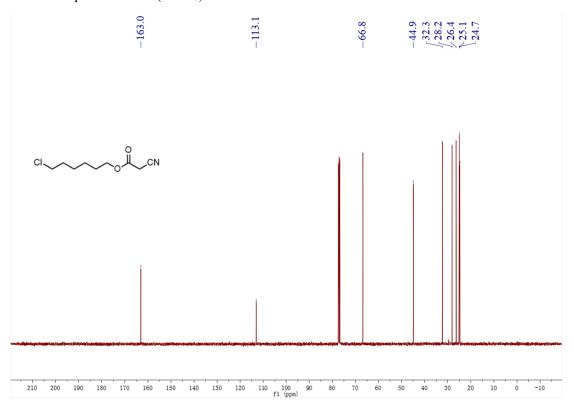

¹³C NMR spectrum of **31** (CDCl₃)


¹H NMR spectrum of **32** (CDCl₃)

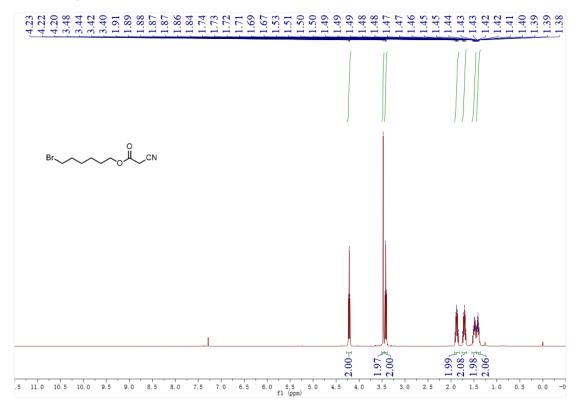

¹³C NMR spectrum of **32** (CDCl₃)

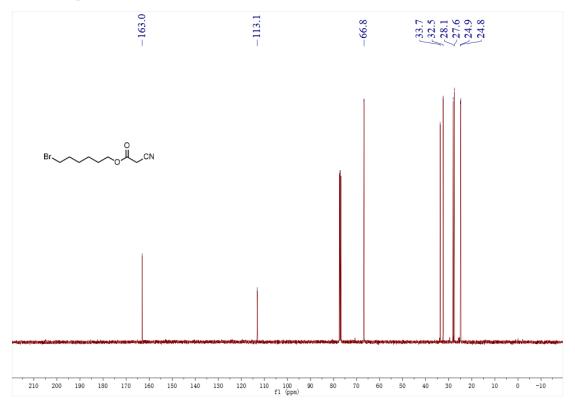


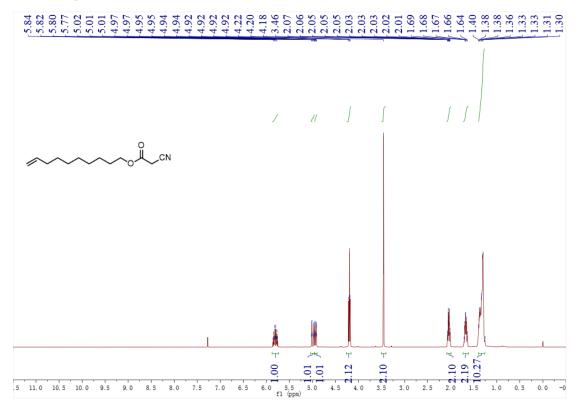
¹H NMR spectrum of **33** (CDCl₃)

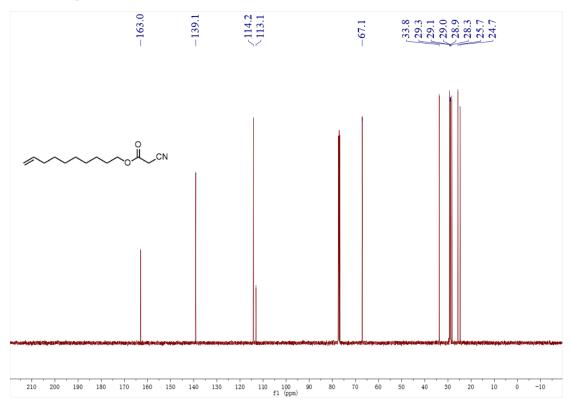


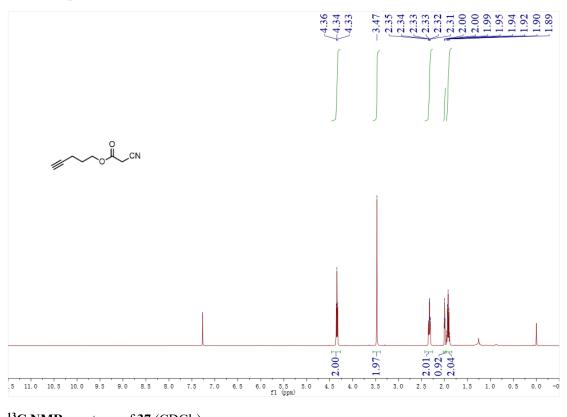
¹³C NMR spectrum of **33** (CDCl₃)

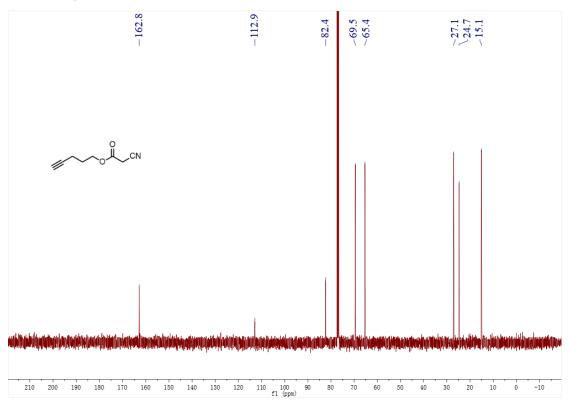


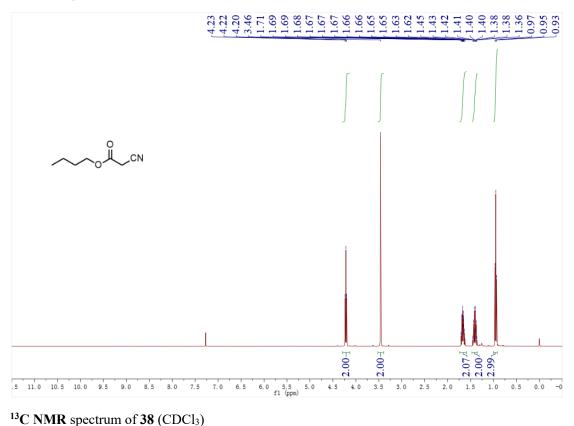

¹³C NMR spectrum of **34** (CDCl₃)

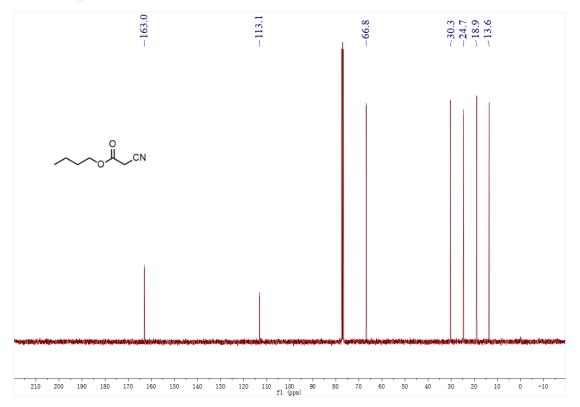

¹H NMR spectrum of **35** (CDCl₃)

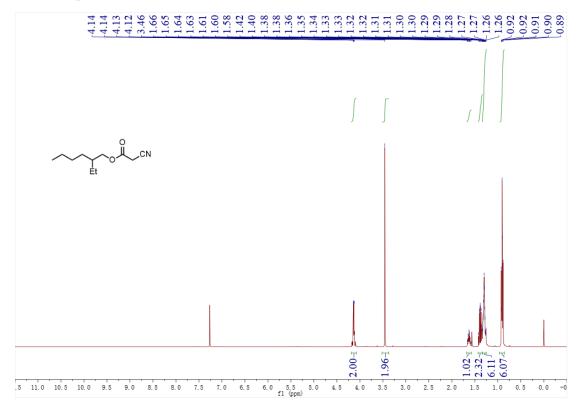

¹³C NMR spectrum of 35 (CDCl₃)

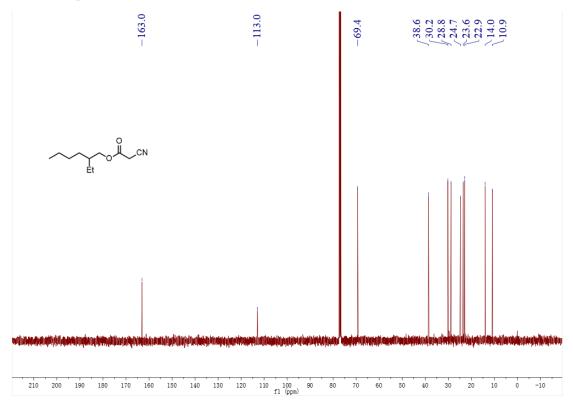

¹H NMR spectrum of **36** (CDCl₃)

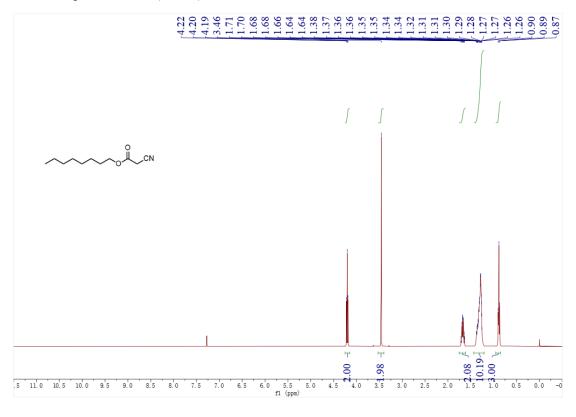

¹³C NMR spectrum of 36 (CDCl₃)

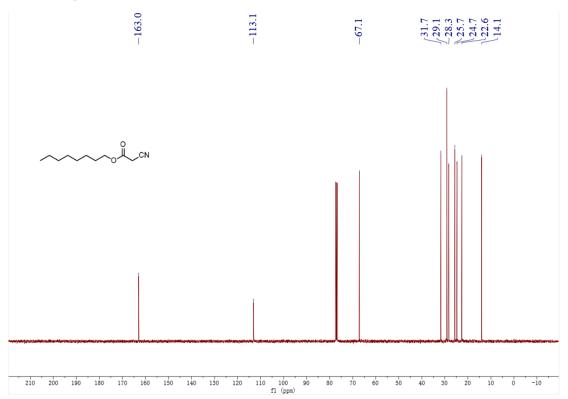

¹H NMR spectrum of **37** (CDCl₃)

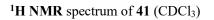

¹³C NMR spectrum of **37** (CDCl₃)

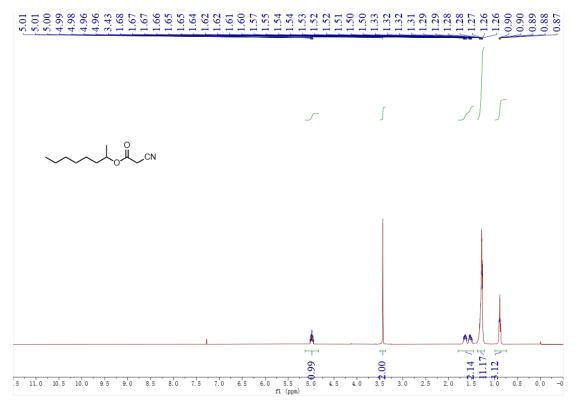

¹H NMR spectrum of **38** (CDCl₃)

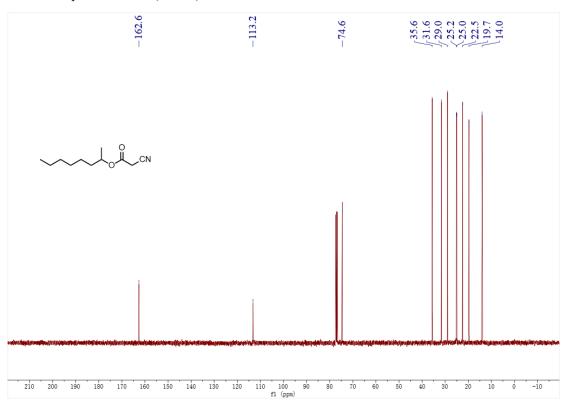

¹³C NMR spectrum of **38** (CDCl₃)

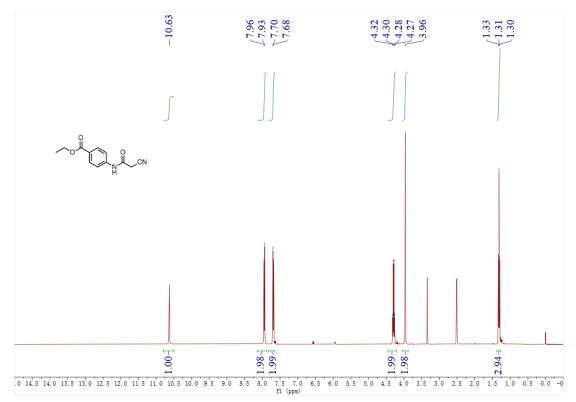

¹H NMR spectrum of **39** (CDCl₃)

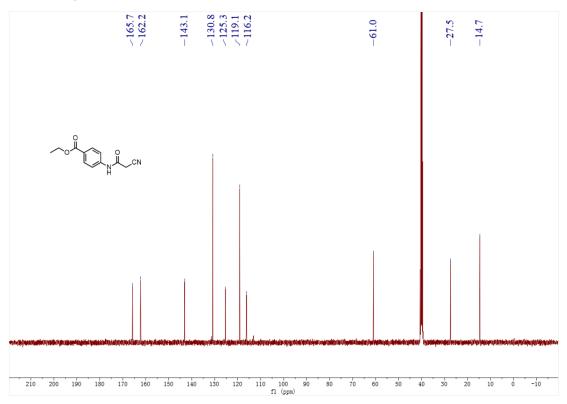

¹³C NMR spectrum of **39** (CDCl₃)

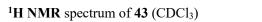


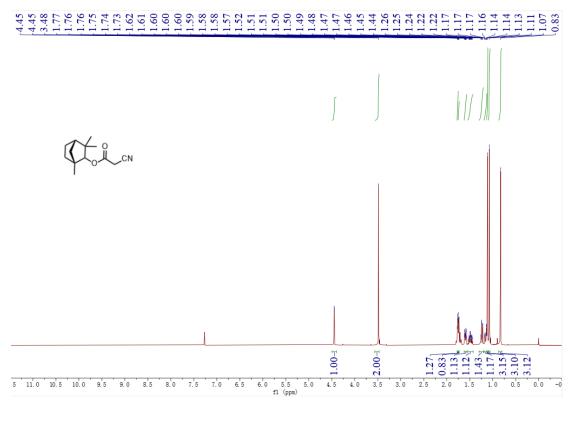

¹H NMR spectrum of 40 (CDCl₃)

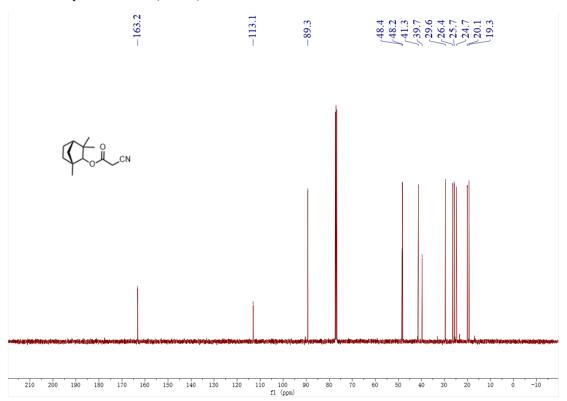

¹³C NMR spectrum of 40 (CDCl₃)

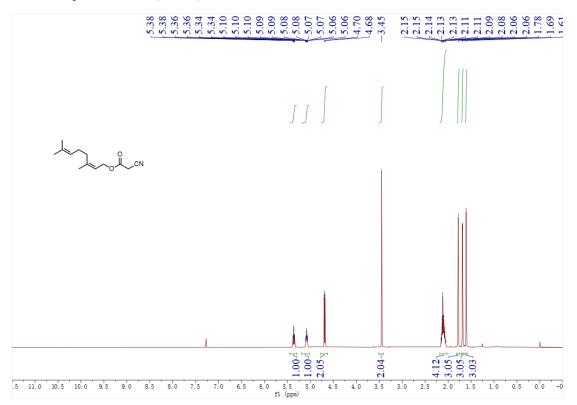


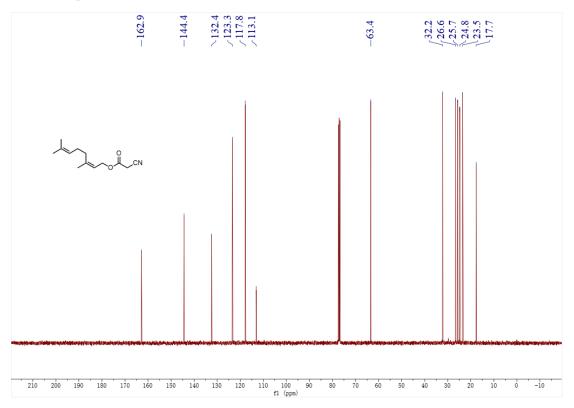

¹³C NMR spectrum of 41 (CDCl₃)

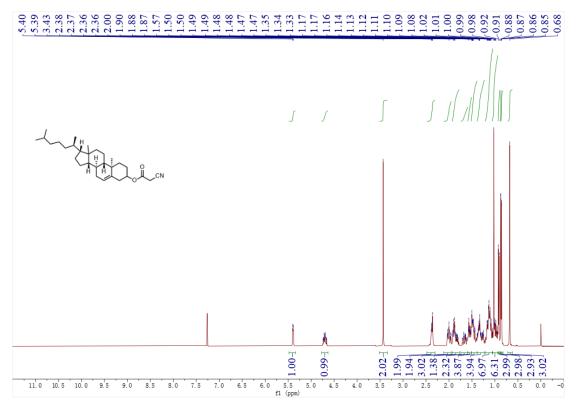


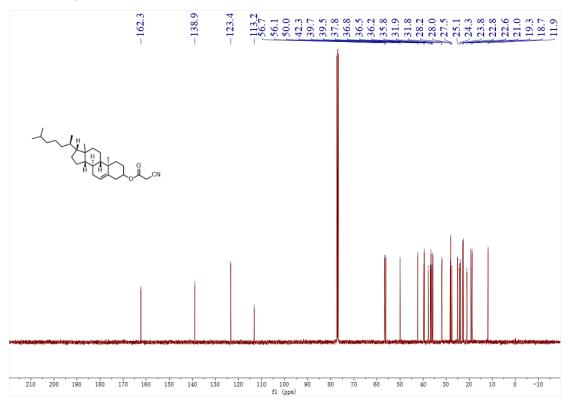

¹H NMR spectrum of 42 (CDCl₃)

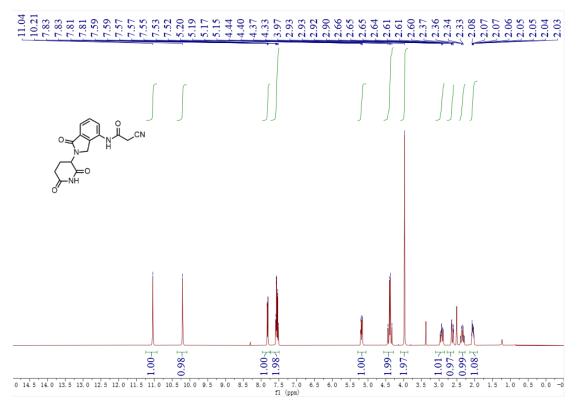

¹³C NMR spectrum of 42 (CDCl₃)

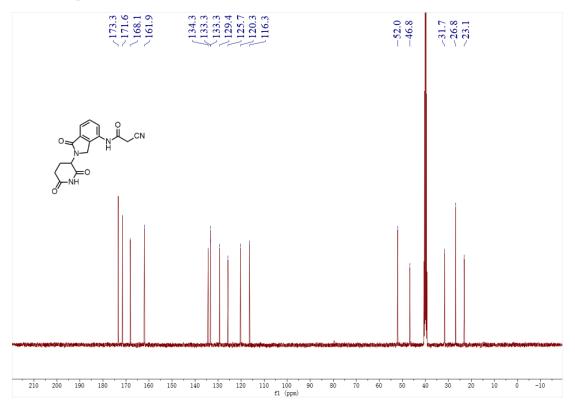


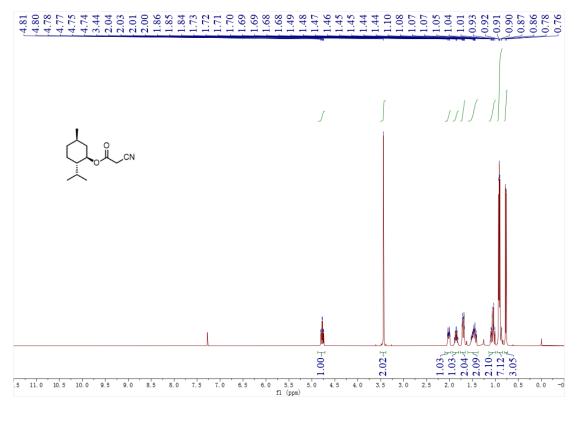

¹³C NMR spectrum of **43** (CDCl₃)

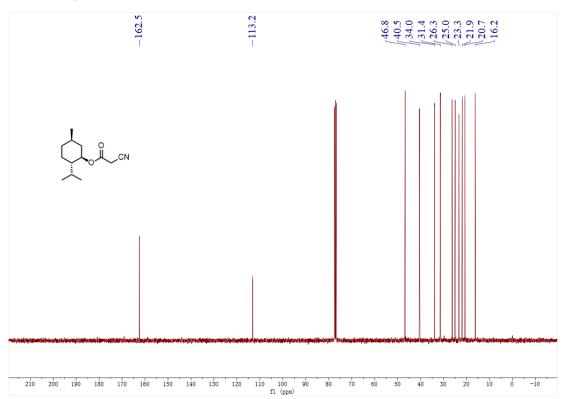

¹H NMR spectrum of 44 (CDCl₃)

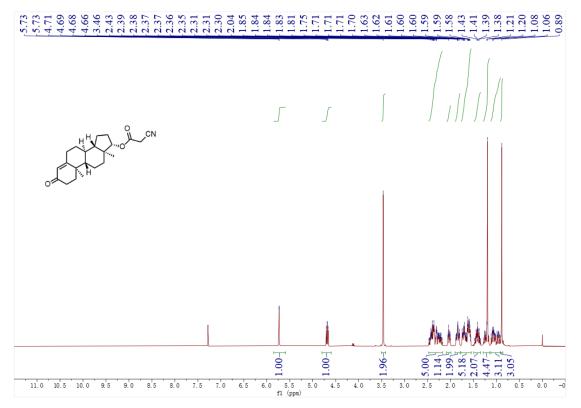

¹³C NMR spectrum of 44 (CDCl₃)

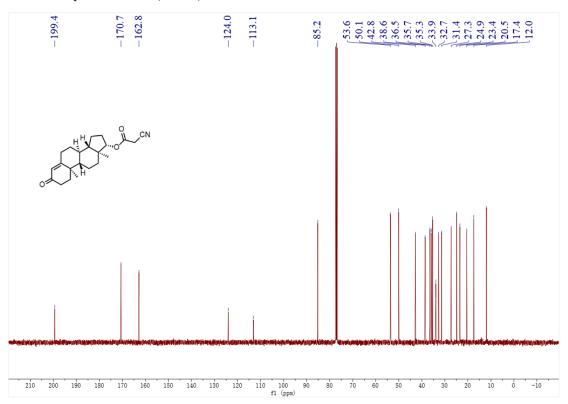

¹H NMR spectrum of 45 (CDCl₃)

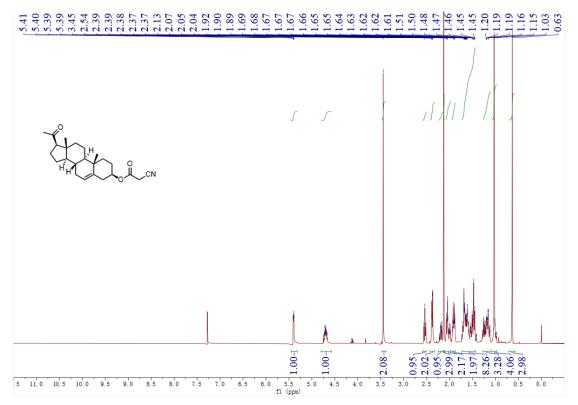

¹³C NMR spectrum of 45 (CDCl₃)

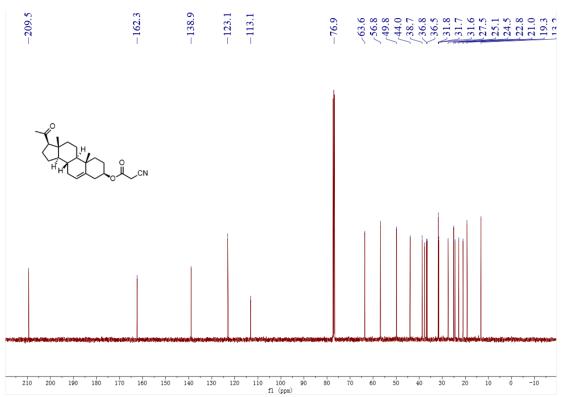

¹H NMR spectrum of 46 (CDCl₃)

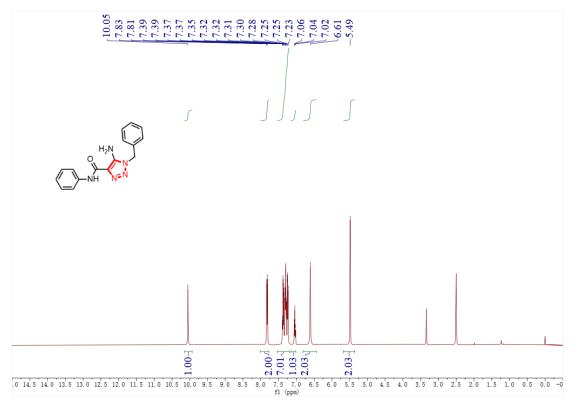

¹³C NMR spectrum of 46 (CDCl₃)

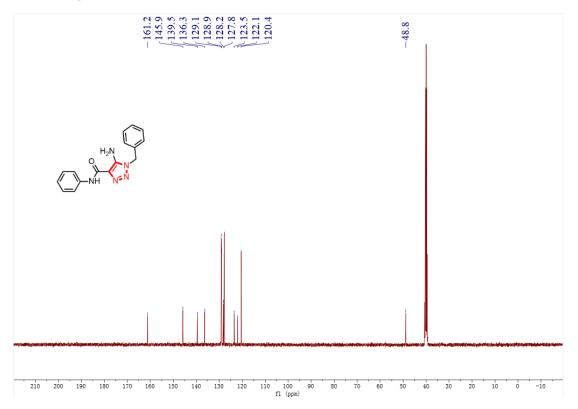

¹H NMR spectrum of 47 (CDCl₃)

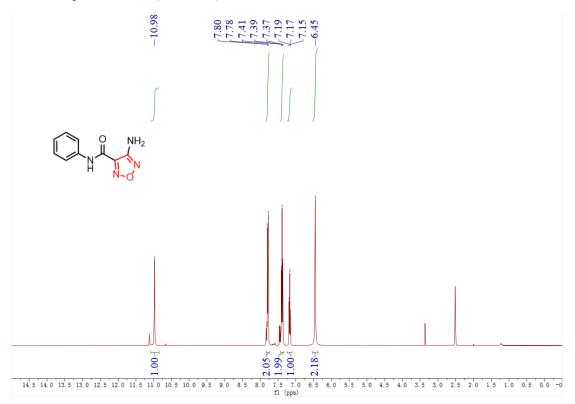

¹³C NMR spectrum of 47 (CDCl₃)

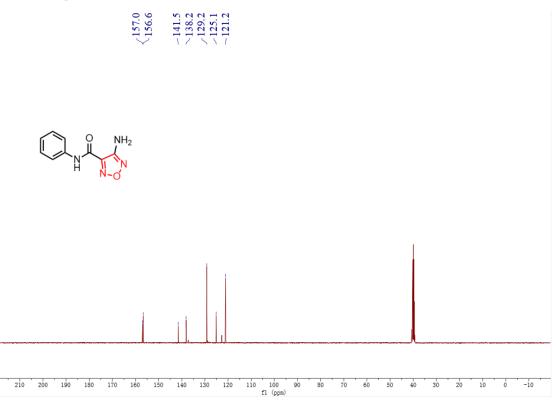

¹H NMR spectrum of 48 (CDCl₃)

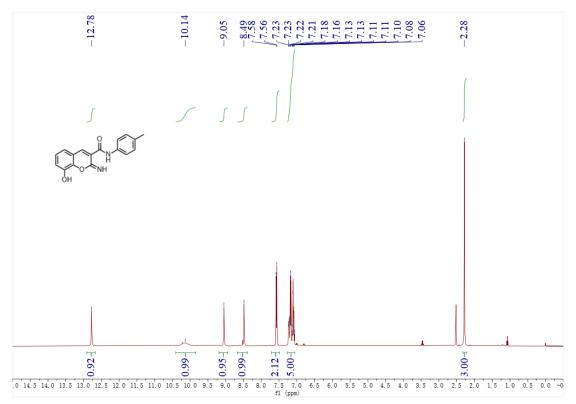

¹³C NMR spectrum of 48 (CDCl₃)

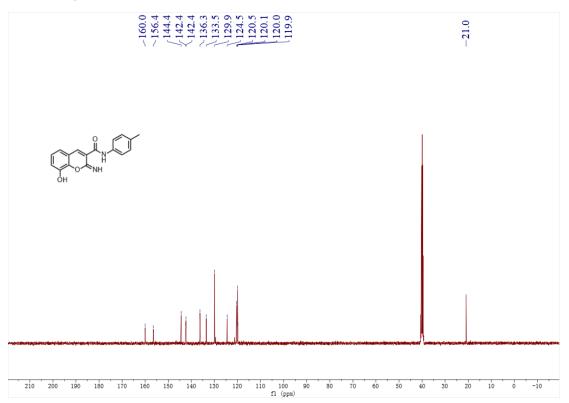

¹H NMR spectrum of 49 (CDCl₃)

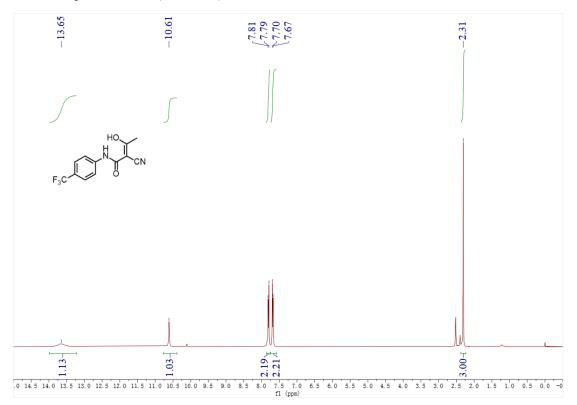

¹³C NMR spectrum of 49 (CDCl₃)

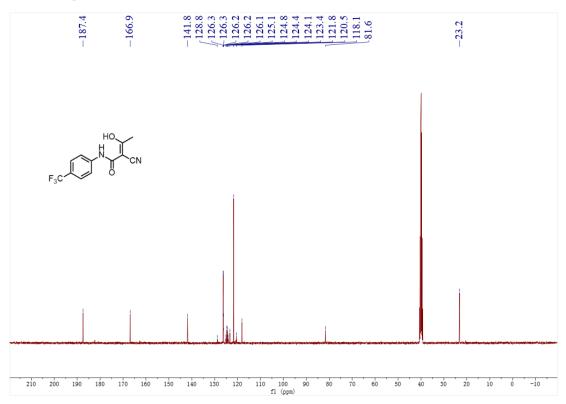

¹H NMR spectrum of **50** (DMSO-d₆)

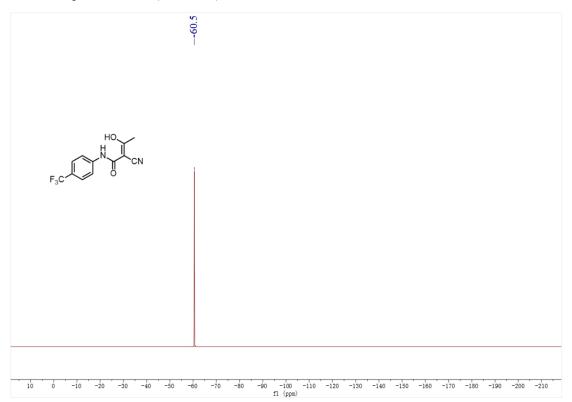

¹³C NMR spectrum of **50** (DMSO-d₆)


¹H NMR spectrum of **51** (DMSO-d₆)


¹³C NMR spectrum of **51** (DMSO-d₆)


¹H NMR spectrum of **52** (DMSO-d₆)


¹³C NMR spectrum of **52** (DMSO-d₆)


¹H NMR spectrum of **53** (DMSO-d₆)

¹³C NMR spectrum of **53** (DMSO-d₆)

¹⁹F NMR spectrum of **53** (DMSO-d₆)

