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1. Materials and methods:

Every chemical and solvent was bought from a commercial supplier and used exactly as
supplied. The ligands 9-hydroxy-1-phenalenone (HO,0-PLY),! 5-bromo-9-hydroxy-1-
phenalenone (HO,0-PLY-Ph)? and the metal precursor Cu(BPY)Cl,3 were prepared according
to the literature methods. 'H and 3C{*H} NMR spectra were carried out on a Bruker advance
400 MHz spectrometer. The elemental (C, H, and N) analyses were performed using a Perkin
Elmer 2400 CHN microanalyzer. Electrospray ionization mass spectra (ESI) were recorded on
a Q-tof-micro quadruple mass spectrometer. Electronic absorption spectra were performed
on a HITACHI U-2910 UV-Vis spectrophotometer. IR spectra were obtained using an FTIR-
8400S SHIMADZU spectrophotometer. EPR spectroscopic measurements were executed on
a Magnettech GmbH EPR Spectrometer MiniScope MS400. Cyclic voltammetry was
accomplished in DMSO with 0.1 M BusNCIO, as electrolyte using a three-electrode
configuration (Ag/AgCl reference electrode, glassy-carbon working electrode, Pt counter

electrode) and a K-Lyte 1.2 potentiostat.

2. Characterization of HO, O-PLY and HO, O-PLY-Ph ligands:

O NGO @O NI M
Soaaninnwmn

GENNNNNNN

=y =

16.01

O OH

oy W, P

=] NON®D

(-] [-N--N-1

- P

T T T T T T T T T T T T

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

f1 (ppm)

Figure S1: IH NMR spectra of ligand HO,O-PLY.
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Figure S2: 13C NMR spectra of ligand HO,0-PLY.
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Figure S3: IH NMR spectra of ligand HO,O-PLY-Ph.
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Figure S4: 13C NMR spectra of ligand HO,O-PLY-Ph.

3. Characterization of precursor-complex [Cu(BPY)Cl,]:
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Figure S5: UV-VIS spectra of precursor-complex Cu(BPY)Cl, in methanol.
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Cu(BPY)CI,
——HO0,0-PLY
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Figure S6: Cyclic Voltammogram of precursor-complex Cu(BPY)Cl,, HO,O-PLY and HO,O-PLY-
Ph in DMSO/0.1 M BusNPFg at 298 K vs Ag/AgCl.

4. Synthesis and characterization of Complex 1:

4.1 Synthesis of [(BPY)Cu'(O,0-PLY-Ph)CI], 1:

To a stirred methanolic solution (5 mL) of ligand HO,O0-PLY-Ph (98 mg, 0.36 mmol) and NEt;
(100 pL, 0.72 mmol), a 8 mL DMF solution of Cu(BPY)Cl, (104.4 mg, 0.36 mmol) was added
dropwise. Subsequently, the reaction mixture was refluxed at 90°C in the air for 6 h
followed by ether diffusion at room temperature resulting in dark green solid precipitation.
The precipitate was filtered, washed with ethanol followed by diethyl-ether, and dried in a
vacuum, leading to pure complex 1, used in catalysis without further purification. Yield: 141
mg, 74%. Elemental analysis calc. (%) for 3(C,9H19CICuN,0,), 5(H,0): C 62.59, H 4.04, N 5.03;
found: C 62.37, H 3.94, N 4.89; ESI-MS: (m/z): calc. for CygH19CICuN,0,: 525.0431 [M]*;
found: 525.0432. UV-vis (DMSO) Ama/nm (e in M~lcm™): 343(16975), 358(30701),
405(3288), 427(6853), 452 (8616).
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Figure S7: UV-Vis Spectra of complex 1 in DMSO.
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Figure S8: ESI-MS spectrum of complex 1
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4.2. Synthesis of [(BPY)Cu'"(0,0-PLY)Cl], 2:

Complex 2 was synthesized following the procedure for 1 by using ligand HO,0-PLY (71 mg,
0.36 mmol), NEt; (100 pL, 0.72 mmol), and precursor complex Cu(BPY)Cl, (104.4 mg, 0.36
mmol). The compound was isolated as a deep-green precipitate and used for catalysis
without further purification. Yield: 118 mg, 73%. Elemental analysis calc. (%) for
Cy3H15CICUN,0,: C 61.34, H 3.36, N 6.22; found: C 61.49, H 3.42, N 6.07; ESI-MS: (m/z): calc.
for Cy3HisCICuN,O;: 414.0435 [M-CI]*; found: 414.0423. UV-vis (DMSO) Amax/nm (g in
M-lcm™): 342(16795), 357(30612), 428(6794), 453(8675).
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Figure S9: UV-Vis Spectra of complex 2 in DMSO.
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Figure S10: ESI-MS spectrum of complex 2.
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5. X-ray diffraction studies of 1:

For X-ray diffraction studies, single crystals of complexes 1 were obtained by diethyl-ether
diffusion into the concentrated DMF solutions. Data collections were made on a Bruker-
Kappa APEX Il CCD diffractometer equipped with a 1K charge-coupled device (CCD) area
detector employing a graphite monochromated Mo-Ka radiation (k% 0.71073 A) at 100.0(2)
K. The cell parameters and the reduction and correction of the collected data were
determined by SMART SAINTPLus software, respectively,*> followed by SADABS absorption
corrections®. Finally, the crystal structures were solved by the direct method with the
SHELXL-97 program package’. The refinement by the full-matrix least-squares method was
executed on all F2 data with SHELXL-97. For all non-hydrogen atoms, anisotropic refinement
was performed. Subsequently, the additional hydrogen atoms were positioned using the

riding model. The molecular graphics were created using the Mercury software.

Supplementary crystallographic data are available free of charge from The Director, CCDC,
12 Union Road, Cambridge, CB2 1EZ, UK (fax: +44-1223-336033; E-mail:
deposit@ccdc.cam.ac.uk or www: http://www.ccdc.cam.ac.uk) upon request, quoting

deposition number CCDC 2421685 for complex 1.
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Table S1: X-ray structural data of complex 1

Parameters

Complex 1

Empirical formula

Formula weight

T (K)

Wavelength (A)

Crystal system

Space group

Unit cell dimensions

a(A)

b (A)

c (A)

a(’)

B(°)

v ()

V (A3)

VA

p (gm cm™3)

Absorption coefficient (mm™)
F (000)

Theta range for data collection
Index ranges (h, k, 1)
Reflections collected
Independent reflections
R(int)

Final R indices [I1>0.0 sigma(l)]
Largest diff. peak and hole

3(Cy9H15CICUN,0,), 5(H,0)
1669.53

100

1.54184

Triclinic

P-1 (No. 2)

11.9198 (2)
13.4821 (2)
22.5889 (4)
84.990 (2)
84.584 (1)
82.389 (1)
3572.03 (10)
2

1.552

2.653

1714
3.3to75.6
-14:13;-16:16; -28: 28
55458
14375

0.075

R1=0.0770, wR2 = 0.1833,
2.35and -2.56 e. A3
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Table S2: Selected X-ray crystallographic bond lengths (&) and bond angles (°) of complex 1.

Bond angles (°)

Cl1—Cu1-01 97.89 (7) 02-Cul-N2 90.59 (10)
Cl1-Cu1-02 98.28 (7) N1—Cu1-N2 80.68 (11)
CI1—Cu1-N1 93.17 (8) Cul-01-C1 124.3 (2)
Cl1—Cul-N2 101.37 (8) Cul-02-C11 125.9 (2)
01—Cu1-02 92.18 (10) Cul-N1-C20 124.6 (2)
01-Cul—-N1 92.74 (10) Cul-N1-C24 115.3 (2)
01-Cul-N2 159.93 (10) Cul-N2-C25 115.0 (2)
02—Cul—-N1 166.80 (11) Cul-N2-C29 125.7 (2)
Bond lengths (A)
Cul—Cl1 2.528 (10) 02-C11 1.276 (4)
Cul-01 1.950 (2) N1-C24 1.348 (4)
Cul-02 1.913 (2) N2-C29 1.350 (4)
Cul-N1 1.995 (3) N1-C20 1.340 (5)
Cul-N2 2.018 (3) N2—C25 1.342 (4)
01-C1 1.270 (4)
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6. Experimental procedures for arylation of C—H bonds:

6.1. Optimization of photocatalytic C—H arylation of thiophene:

A mixture of catalyst (x mol%), Thiophene (0.96 mmol) and chlorobenzene diazonium salts
(0.32 mmol) in 1 mL of DMSO was placed in a test tube. The reaction mixture was stirred at
room temperature with irradiation of 30 W blue LED under air for 24 h. The arylated
product was extracted using ethyl acetate (3 x 5 mL) and dried over anhydrous sodium
sulphate. The solvent was removed under reduced pressure, and the obtained crude
product was purified by column chromatography on silica gel (60-120 mesh) using a

hexane/ethyl-acetate (100:1) mixture to yield the pure desired mono-arylated product.

N,BF,

Catalyst (X mol%
L+ = [~
S = ,Solvent, Time, RT S
Cl
3a 4

b 5b
(3 equiv.) (1 equiv.)

Scheme S1: Photocatalytic C—H arylation of thiophene using chlorobenzene diazonium salt.

6.2. General procedure for photocatalytic C—H arylation of arenes and heteroarenes:

A mixture of catalyst 1 (5 mol%, 0.016 mmol), arene (0.96 mmol for thiophene and furan,
1.6 mmol for benzenes, toluene, xylene, nitro-benzene and mesitylene) and aryldiazonium
salts (0.32 mmol) in 1 mL of DMSO was placed in a test tube. The reaction mixture was
stirred at room temperature with irradiation of 30 W blue LED under air for 24 h. The
arylated product was extracted using ethyl acetate (3 x 5 mL) and dried over anhydrous
sodium sulphate. The solvent was removed under reduced pressure, and the obtained crude
product was purified by column chromatography on silica gel (60-120 mesh) using a

hexane/ethyl-acetate mixture to yield the pure desired mono-arylated product.

N,BF, —
_ . aW
@ or <\ /> + P | 1 (5 mol%) - X |
X | N
R1 RZ

» ,DMSO, 24 h, RT 56 R?
OR
X=S (3a), O (3b) " = =
Ri= H (3¢), Me (3q), R°= H (4a), Cl (4b), OMe (4c), \ /7
1,213/4- Me (3¢), ~ NO2(4d), Br (4e), CN (4f), R R?
1,3,5-Me (36, F (4g), Me (4h), I (4i) 7-13
NO,(3g)

Scheme S2: Photocatalytic C—H arylation of arenes and heteroarenes using aryl diazonium

salt.
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6.3. Gram scale synthesis of 6¢:

A mixture of catalyst (137 mg, 0.26 mmol), furan (1.13 mL, 15.6 mmol) and nitro-benzene
diazonium salts (1g, 5.2 mmol) in 6 mL of DMSO was placed in a test tube. The reaction
mixture was stirred at room temperature with irradiation of 30 W blue LED under air for 24
h. The arylated product was extracted using ethyl acetate (3 x 25 mL) and dried over
anhydrous sodium sulphate. The solvent was removed under reduced pressure, and the
obtained crude product was purified by column chromatography on silica gel (60-120 mesh)
using a hexane/ethyl-acetate mixture to yield the pure desired mono-arylated product with

87% yield (856 mg).

N,BF,
Complex 1 (5 mol%
[\> + P ( Q] > [\>—©—N02
o = ,.DMSO, 24 h, RT o
NO, Yield: 87%

Scheme S3: Gram scale synthetic scheme of 6c.

6.4. Gram scale synthesis of 13a:

A mixture of catalyst (116 mg, 0.22 mmol), nitro benzene (2.3 mL, 22.5 mmol) and chloro-
benzene diazonium salts (1g, 4.5 mmol) in 6 mL of DMSO was placed in a test tube. The
reaction mixture was stirred at room temperature with irradiation of 30 W blue LED under
air for 24 h. The arylated product was extracted using ethyl acetate (3 x 25 mL) and dried
over anhydrous sodium sulphate. The solvent was removed under reduced pressure, and
the obtained crude product was purified by column chromatography on silica gel (60-120
mesh) using a hexane/ethyl-acetate mixture to yield the pure desired mono-arylated

product with 78% yield (812 mg).

NO, N2BF,4 NO,
Complex 1 (5 mol%
= ,DMSO, 24 h, RT
Cl Yield: 78%

(22.5 mmol) (4.5 mmol)

Scheme S4: Gram scale synthetic scheme of 13a.
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7. Mechanistic studies:

7.1. Procedure for reactions in the presence of radical scavenger TEMPO:

A mixture of catalyst (0.016 mmol), furan (0.96 mmol), cyano-benzene diazonium salts (0.32
mmol), and the required amount of TEMPO in 1 mL of DMSO was placed in a test tube. The
reaction mixture was stirred at room temperature with irradiation of 30 W blue LED under
air for 24 h. The arylated product was extracted using ethyl acetate (3 x 5 mL) and dried over
anhydrous sodium sulphate. The solvent was removed under reduced pressure, and the
obtained crude product was purified by column chromatography on silica gel (60-120 mesh)

using a hexane/ethyl-acetate mixture to yield the pure desired product.

N,BF,

1 (5 mol%) [
[/ \5 + »> O
0 5 ,DMSO, rt, 24 h CN
TEMPO (X mol%)
CN

TEMPO (5 mol%): 58%
(3 equiv.) (1 equiv.) TEMPO (1 equiv.): >10%

Scheme S5: 1 catalyzed C—H arylation of furan in the presence of TEMPO.

7.2. Procedure for TEMPO trapped intermediate:

A mixture of catalyst (0.16 mmol), cyano-benzene diazonium salts (0.32 mmol), and TEMPO
(0.32 mmol) in 1 mL of DMSO was placed in a test tube. The reaction mixture was stirred at
room temperature with irradiation of 30 W blue LED under air for 24 h. The arylated
product was extracted using ethyl acetate (3 x 15 mL) and dried over anhydrous sodium
sulphate. The solvent was removed under reduced pressure, and the obtained crude
product was purified by column chromatography on silica gel (60-120 mesh) using a
hexane/ethyl-acetate mixture to yield the pure desired compound 14 with 64% yield. The

compound 14 was characterized by NMR spectroscopy (Figure S, S) and X-ray

crystallography.
L i
+
N

1 (0.5 equiv.) A
>

(0]
h = ,DMSO, rt, 24h
(o]
CN . NC

(1 equiv.) (1 equiv.) Yield: 64%

Scheme S6: Trapping of aryl radicals using TEMPO.
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Figure S12: 13C NMR spectra of TEMPO-trapped radical (14).

S14



7.3. Photoluminescence study of O,0-PLY-Ph with 4b:

=5 mM PLY-Ph
=5 mM PLY-Ph + 8 mM 4b
12_ =5 mM PLY-Ph + 16 mM 4b

=5 mM PLY-Ph + 24 mM 4b
——5mM PLY-Ph + 32 mM 4b
-5 mM PLY-Ph + 40 mM 4b
A\, =5 mM PLY-Ph + 48 mM 4b

Intensity (1 x 109)

450 500 550 600

Al nm

Figure S13: Photoluminescence titration of HO,O-PLY-Ph with chlorobenzene diazonium salt.

0 10 20 30 40 50
Conc. (mM)

Figure S14: Stern-Volmer plot of the titration of HO,O-PLY-Ph with chlorobenzene diazonium

salt.
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7.4. UV-Vis-NIR studies for finding the interaction of catalyst 1 with different arenes:

All the UV-VIS experiments have been carried out with 30 uM solution of catalyst 1 in

different sets of solutions.

SET 1: 2.45 mL DMSO solution of catalyst 1 + 0.05 mL DMSO.
SET 2: 2.45 mL DMSO solution of catalyst 1 + 0.05 mL thiophene.
SET 3: 2.45 mL DMSO solution of catalyst 1 + 0.05 mL furan.

SET 4: 2.45 mL DMSO solution of catalyst 1 + 0.05 mL benzene.

The spectra are shown in Figure 5c.

7.5. Fluorescence studies for finding the interactions of catalyst 1 with different arenes:

All the fluorescence measurements have been carried out with 2 mM solution of catalyst 1

in different sets of solutions.

SET 1: 2 mL DMSO solution of catalyst 1 + 0.1 mL DMSO.
SET 2: 2 mL DMSO solution of catalyst 1 + 0.1 mL thiophene.
SET 3: 2 mL DMSO solution of catalyst 1 + 0.1 mL furan.

SET 4: 2 mL DMSO solution of catalyst 1 + 0.1 mL benzene.

2.5x10° -
2.0x10° - 1
1+ Thiophene

> 5 1+ Furan
T 1.5x10 1+ Benzene
s
= 1.0x105-

5.0x10%-

0.0 T T
450 500 550 600

A/ nm

Figure S15. Fluorescence spectra of complex 1 with different arenes used in C—H arylation
reaction.
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7.6. C-H arylation of mesitylene using catalyst 2:

A mixture of catalyst 2 (5 mol%, 0.016 mmol), mesitylene (1.6 mmol) and aryldiazonium
salts (0.32 mmol) in 1 mL of DMSO was placed in a test tube. The reaction mixture was
stirred at room temperature with irradiation of 30 W blue LED under air for 24 h. The
arylated product was extracted using ethyl acetate (3 x 5 mL) and dried over anhydrous
sodium sulphate. The solvent was removed under reduced pressure, and the obtained crude
product was purified by column chromatography on silica gel (60-120 mesh) using a

hexane/ethyl-acetate mixture to yield the pure desired mono-arylated product.

N,BF,
+ -z | 1 (5 mol%) g \_/
N\ s ,DMSO, 24 h, RT |
R! R1
R'=H, CI, NO,, Br, 12
CN, F, Mg, |

Scheme S7: 2-catalzed C-H arylation of mesitylene.

7.7. On-Off experiment:

A mixture of catalyst 1 (5 mol%, 0.016 mmol), thiophene (0.96 mmol) and chloro-benzene
diazonium salts (0.32 mmol) in 1 mL of DMSO was placed in a test tube. The reaction
mixture was stirred at room temperature with irradiation of 30 W blue LED under air for 4 h.
After that, the reaction mixture was stirred for another 20 h in dark conditions. The arylated
product was extracted using ethyl acetate (3 x 5 mL) and dried over anhydrous sodium
sulphate. The solvent was removed under reduced pressure, and the obtained crude
product was purified by column chromatography on silica gel (60-120 mesh) using a
hexane/ethyl-acetate mixture to yield the pure desired mono-arylated product with 84 %

yield.

N2BF4 (i1 (5 mol%)

,DMSO, 4 h, RT
I\ + S @—@-m
S (ii) 20 h without light S

Cl Yield: 84 %

3a 4b
(3 equiv.) (1 equiv.)

Scheme S8: 1-catalysed C-H arylation of thiophene under light on-off condition.
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7.8. Procedure for detection TEMPO trapped biaryl radical using Furan:

A mixture of catalyst (0.16 mmol), furan (0.96 mmol), cyano-benzene diazonium salts (0.32
mmol), and TEMPO (0.32 mmol) in 1 mL of DMSO was placed in a test tube. The reaction
mixture was stirred at room temperature with irradiation of 30 W blue LED under air for 24
h. The arylated product was extracted using ethyl acetate (3 x 15 mL) and dried over
anhydrous sodium sulphate. The solvent was removed under reduced pressure leads to the

crude product. The TEMPO-trapped biaryl radical product (15) was detected by mass

\

{/ \E " n >Ej< 1 (0.5 equiv.) - o)
0 \
(0]
CN .

spectroscopy.

=,DMSO, 24 h, RT /i

(0]
(3 equiv.) (1 equiv.) (1 equiv.) CN

Scheme S9: Trapping of biaryl-radical using TEMPO.

326.2 \
o]
9
(o]
CN
201.1
i e b, 4n4 X
200 300 400 500 600 700 800
m/z. Da

Figure $16: Mass spectrum of compound 15.
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7.9. Kinetic isotope effect:

A mixture of catalyst 1 (116 mg, 5 mol%), benzene diazonium salts (62 mg, 0.32 mmol) and
1:1 mixture of benzene and benzene-dg in 1 mL of DMSO was placed in a test tube. The
reaction mixture was stirred at room temperature with irradiation of 30 W blue LED under
air for 24 h. The arylated product was extracted using ethyl acetate (3 x 25 mL) and dried
over anhydrous sodium sulphate. The solvent was removed under reduced pressure, and
the obtained crude product was purified by column chromatography on silica gel (60-120
mesh) using a hexane/ethyl-acetate mixture. The GC-MS analysis indicates the formation of

1:1 mixture of phenyl-benzene (7a) and deuterated phenyl-benzene (7a’).

0§

Catalyst 1 (5 mol%) - 7a
= ,DMSO, 24 h, RT

4a OO

3c 3c

Scheme S10: Kinetic isotope effect experiments

154.0

159.1

A53.0

1520
1581

<1601

b2
|

1y I
50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 230 230 240 250 26¢
miz

Figure S17: GC-MS spectrum of the mixture of 7a and 7a’
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8. X-Ray Structure details of 11c and 14:

Single crystals of biaryl product 11c, and TEMPO-trapped aryl radical 14 were grown by slow
evaporation of DCM solutions at RT. The measurement details are given in section 5.
Supplementary crystallographic data are available free of charge from The Director, CCDC,
12 Union Road, Cambridge, CB2 1EZ, UK (fax: +44-1223-336033; E-mail:
deposit@ccdc.cam.ac.uk or www: http://www.ccdc.cam.ac.uk) upon request, quoting
deposition number CCDC 2421684 for TEMPO adduct 14 and CCDC 2311199 for bi-arylated
product 11c.
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Parameters

Empirical formula
Formula weight

T (K)

Wavelength (A)
Crystal system

Space group

Unit cell dimensions
a(A)

b (A)

c (A)

o (%)

B(°)

v (%)

Vv (A3)

VA

p (gm cm™3)
Absorption coefficient
(mm™)

F (000)

Theta range for data
collection

Index ranges (h, k, )
Reflections collected
Independent reflections
R(int)

Final R indices
[1>0.0sigma(l)]
Largest diff. peak and
hole

Table S3: X-ray structural data of compounds 11c and 14.

Compound 11c

C14H13NO;
227.25
100
1.54184
Monoclinic
P21/c

6.6579 (2)
22.1300 (5)
7.8468 (2)
90
101.462 (3)
90
1133.09 (5)
4
1.332

0.723
480
4.0,78.1

-8:8,-27:27,-9:9
9298
2355
0.026

2248

-0.33and 0.28 e. A3

Compound 14

C16H22N20
258.35
100
1.54184
Triclinic
P-1 (No. 2)

6.6423 (2)
13.8452 (3)
16.6714 (4)
79.252 (2)
85.493 (2)
83.620 (2)
1494.31 (7)
4
1.148

0.563
560
3.3,77.5

-8:8,-17:17, -19:20
23558
6131
0.038

5482

-0.22 and 0.19 e. A-3
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9. The analytical and spectroscopic characterization data of the products:

2-phenylthiophene, 5a

B,

White solid (Yield: 84%). The crude product was purified by column chromatography using
silica gel (60-120 mesh) with hexane.

1H NMR (400 MHz, CDCl3) 6 (ppm): 7.61-7.58 (m, 2H), 7.38-7.35 (m, 2H), 7.31-7.25 (m, 3H),
7.06 (dd, J=5.1, 3.7 Hz, 1H).

13C NMR (100 MHz, CDCl5) & (ppm): 144.44, 134.41, 128.89, 128.0, 127.46, 127.17, 125.97,
124.80, 123.08.

2-(4-chlorophenyl)thiophene, 5b?

S

White solid (Yield: 91%). The crude product was purified by column chromatography using
silica gel (60-120 mesh) with hexane.

1H NMR (400 MHz, CDCl3) 6 (ppm): 7.54 (d, J = 8.6 Hz, 2H), 7.35 (d, J = 8.7 Hz, 2H), 7.29 (d, J
=3.5Hz, 2H), 7.08 (dd, J = 4.9, 3.9 Hz, 1H).

13C NMR (100 MHz, CDCl3) & (ppm): 143.19, 133.30, 133.03, 129.14, 128.26, 127.22, 125.31,
123.56.

2-(4-methoxyphenyl)thiophene, 5c8

S

White solid (Yield: 94%). The crude product was purified by column chromatography using
silica gel (60-120 mesh) with hexane.

14 NMR (400 MHz, CDCls) & (ppm): 7.56-7.52 (m, 2H), 7.20 (d, J = 4.0 Hz, 2H), 7.06 (dd, J =
4.9,3.2 Hz, 1H), 6.92 (d, ) = 8.6 Hz, 2H), 3.84 (s, 4H).

13C NMR (100 MHz, CDCls) & (ppm): 159.27, 144.54, 132.82, 128.01, 127.32, 123.93, 122.17,
114.80, 114.36, 55.45.

2-(4-ntrophenyl)thiophene, 5d®

Q—@—Noz S22



White solid (Yield: 88%). The crude product was purified by column chromatography using
silica gel (60-120 mesh) with 1% of EtOAc in hexane.

1H NMR (400 MHz, CDCl5) & (ppm): 8.24 (d, J = 8.9 Hz, 2H), 7.76-7.72 (m, 2H), 7.46 (ddd, J =
15.6, 4.4, 0.9 Hz, 2H), 7.15 (dd, /= 5.0, 3.7 Hz, 1H).

13C NMR (100 MHz, CDCl3) & (ppm): 146.73, 141.79, 140.74, 128.81, 127.80, 126.14, 125.82,
124.54.

2-(4-bromophenyl)thiophene, 5e®

S

White solid (Yield: 76%). The crude product was purified by column chromatography using
silica gel (60-120 mesh) with hexane.

IH NMR (400 MHz, CDCl5) 6 (ppm): 7.49 (d, J = 3.3 Hz, 4H), 7.30 (d, J = 4.3 Hz, 2H), 7.10 -
7.07 (m, 1H).

13C NMR (100 MHz, CDCl3) & (ppm): 143.04, 133.47, 132.07, 128.29, 127.51, 125.37, 123.60,
121.04.

4-(thiophen-2-yl)benzonitrile, 5f°

S

White solid (Yield: 89%). The crude product was purified by column chromatography using
silica gel (60-120 mesh) with 1% of EtOAc in hexane.

1H NMR (400 MHz, CDCl5) & (ppm): 7.68 — 7.61 (m, 4H), 7.39 (dd, J = 8.4, 4.6 Hz, 2H), 7.14 -
7.08 (m, 1H).

13C NMR (100 MHz, CDCl3) & (ppm): 159.29, 142.08, 138.68, 132.76, 128.54, 127.09, 126.10,
125.13, 118.85, 110.56.

2-(4-fluorophenyl)thiophene, 5g'°

S



White solid (Yield: 72%). The crude product was purified by column chromatography using
silica gel (60-120 mesh) with hexane.

1H NMR (400 MHz, CDCl3) 6 (ppm): 7.60 — 7.55 (m, 2H), 7.29 — 7.26 (m, 1H), 7.24 (dd, J = 3.7,
1.1 Hz, 1H), 7.10 = 7.05 (m, 3H).

13C NMR (100 MHz, CDCl3) & (ppm): 163.62, 161.17, 143.42, 133.17, 128.17, 127.75, 127.67,
124.89, 123.19, 116.03, 115.81.

2-(4-methylphenyl)thiophene, 5h'!
W

S
White solid (Yield: 86%). The crude product was purified by column chromatography using
silica gel (60-120 mesh) with hexane.
1H NMR (400 MHz, CDCl3) 6 (ppm): 7.51 (d, J = 8.1 Hz, 2H), 7.31 — 7.25 (m, 2H),7.19 (d, J =
8.0 Hz, 2H), 7.07 (dd, J = 5.1, 3.7 Hz, 1H), 2.37 (s, 3H).

13C NMR (100 MHz, CDCl3) & (ppm): 144.88, 137.41, 131.92, 129.63, 128.01, 125.97, 124.35,
122.66, 21.25.

2-(2-iodophenyl)thiophene, 5i8

0~

S

|

White solid (Yield: 93%). The crude product was purified by column chromatography using

silica gel (60-120 mesh) with hexane.

14 NMR (400 MHz, CDCl3) & (ppm): 7.99 (dd, J = 8.0, 0.8 Hz, 1H), 7.45 (dd, J = 7.7, 1.7 Hz,
1H), 7.40 (ddd, J = 5.9, 3.7, 0.8 Hz, 2H), 7.20 (dd, J = 3.5, 0.9 Hz, 1H), 7.12 (dd, J = 5.0, 3.6 Hz,
1H), 7.07 — 7.03 (m, 1H).

13C NMR (100 MHz, CDCl5) & (ppm): 146.14, 141.27, 139.13, 137.38, 135.58, 129.84, 128.59,
128.50, 128.17, 100.93.

2-(3-chlorophenyl)thiophene, 5j'2
| \
S
(o]
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White solid (Yield: 84%). The crude product was purified by column chromatography using
silica gel (60-120 mesh) with hexane.

1H NMR (400 MHz, CDCl3) 6 (ppm): 7.58 (t, J = 1.7 Hz, 1H), 7.48 — 7.45 (m, 1H),7.32 — 7.28
(m, 3H), 7.07 (dd, J = 5.0, 3.8 Hz, 1H).

13C NMR (100 MHz, CDCl3) & (ppm): 142.76, 136.16, 134.79, 130.11, 128.15, 127.37, 125.90,
125.59, 124.08, 123.87.

2-(4-chlorophenyl)furan, 6a®
W
(0]

White solid (Yield: 92%). The crude product was purified by column chromatography using
silica gel (60-120 mesh) with hexane.

1H NMR (400 MHz, CDCl3) 6 (ppm): 7.63 — 7.59 (m, 2H), 7.49 (d, J = 1.4 Hz, 1H), 7.39 — 7.35
(m, 2H), 6.66 (d, J = 3.3 Hz, 1H), 6.49 (dd, J = 3.3, 1.8 Hz, 1H).

13C NMR (100 MHz, CDCl3) & (ppm): 153.04, 142.44, 133.05, 129.47, 128.97, 125.11, 111.88,
105.51.

2-(4-methoxyphenyl)furan, 6b?

(o)

White solid (Yield: 89%). The crude product was purified by column chromatography using
silica gel (60-120 mesh) with 1% of EtOAc in hexane.

1H NMR (400 MHz, CDCls) 6 (ppm): 7.61 (d, J = 8.9 Hz, 2H), 7.43 (d, J = 1.9 Hz, 1H), 6.92 (d, J
= 8.8 Hz, 2H), 6.52 (d, J = 3.6 Hz, 1H), 6.45 (dd, J = 3.3, 1.8 Hz, 1H), 3.84 (s, 3H).

13C NMR (100 MHz, CDCl3) & (ppm): 159.12, 154.22, 141.48, 125.33, 124.15, 114.22, 111.62,
103.46, 55.42.

2-(4-nitrophenyl)furan, 6c®

(0]
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White solid (Yield: 93%). The crude product was purified by column chromatography using
silica gel (60-120 mesh) with 1% of EtOAc in hexane.

IH NMR (400 MHz, CDCl3) 6 (ppm): 8.27 — 8.23 (m, 2H), 7.82 — 7.78 (m, 2H), 7.58 (d, J = 2.0
Hz, 1H), 6.88 (d, J = 3.4 Hz, 1H),6.56 (dd, J = 3.5, 1.9 Hz, 1H).

13C NMR (100 MHz, CDCl3) & (ppm): 151.84, 146.52, 144.27, 136.55, 124.44, 124.04, 112.55,
109.08.

2-(4-bromophenyl)furan, 6d®

o)

White solid (Yield: 78%). The crude product was purified by column chromatography using
silica gel (60-120 mesh) with hexane.

1H NMR (400 MHz, CDCl3) 6 (ppm): 7.59 — 7.51 (m, 4H), 7.49 (d, J = 2.0 Hz, 1H), 6.67 (d, J =
3.5 Hz, 1H), 6.49 (dd, J = 3.6, 1.9 Hz, 1H).

13C NMR (100 MHz, CDCl3) & (ppm): 153.04, 142.50, 132.00, 131.90, 129.89, 125.39, 121.17,
111.91, 108.02, 105.65.

4-(furan-2-yl)benzonitrile, 6e'3

(o)

White solid (Yield: 80%). The crude product was purified by column chromatography using
silica gel (60-120 mesh) with hexane.

1H NMR (400 MHz, CDCl3) 6 (ppm): 7.77 = 7.72 (m, 2H), 7.68 — 7.63 (m, 2H), 7.57 = 7.51 (m,
1H), 6.81 (d, J=3.1 Hz, 1H), 6.55 - 6.50 (m, 1H).

13C NMR (100 MHz, CDCl3) 6 (ppm): 152.07, 143.80, 134.74, 132.69, 124.04, 119.07, 112.35,
110.37, 108.27.

2-(4-fluorophenyl)furan, 6f!2

o
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White solid (Yield: 68%). The crude product was purified by column chromatography using
silica gel (60-120 mesh) with hexane.

1H NMR (400 MHz, CDCl3) 6 (ppm): 7.65 — 7.60 (m, 2H), 7.44 (d, J = 1.9 Hz, 1H), 7.07 (d, J =
9.0 Hz, 2H), 6.56 (d, J = 3.4 Hz, 1H), 6.44 (dd, J = 3.4, 1.7 Hz, 1H).

13C NMR (100 MHz, CDCl3) & (ppm): 163.36, 160.91, 153.18, 142.03, 127.29, 125.58, 125.50,
115.89, 115.78, 115.67, 115.56, 111.67, 106.88, 104.61.

2-(4-methylphenyl)furan, 6g®
|| \>_< >_

o
White solid (Yield: 71%). The crude product was purified by column chromatography using
silica gel (60-120 mesh) with hexane.
1H NMR (400 MHz, CDCl5) 6 (ppm): 7.56 (d, J = 8.2 Hz, 2H), 7.46 — 7.43 (m, 1H), 7.19 (d, J =
8.0 Hz, 2H), 6.59 (d, / = 3.3 Hz, 1H), 6.45 (dd, J = 3.3, 1.8 Hz, 1H), 2.36 (s, 3H).
13C NMR (100 MHz, CDCl3) 6 (ppm): 154.26, 141.75, 131.93, 129.43, 128.33, 123.85, 111.62,
104.29, 21.24.

Phenylbenzene, 7a®

White solid (Yield: 78%). The crude product was purified by column chromatography using
silica gel (60-120 mesh) with hexane.

1H NMR (400 MHz, CDCls) & (ppm): 7.59 (d, J = 7.1 Hz, 4H), 7.44 (t, J = 7.6 Hz, 4H), 7.34 (t, ) =
7.3 Hz, 2H).

13C NMR (100 MHz, CDCl5) & (ppm): 141.27, 128.77, 127.27, 127.19.

4-chlorophenylbenzene, 7b?

VeV
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White solid (Yield: 85%). The crude product was purified by column chromatography using
silica gel (60-120 mesh) with hexane.

1H NMR (400 MHz, CDCl3) & (ppm): 7.54 (dd, J = 13.7, 8.0 Hz, 4H), 7.47 — 7.35 (m, 5H).

13C NMR (100 MHz, CDCl3) & (ppm): 140.10, 139.78, 133.48, 129.00, 128.98, 128.49, 128.37,
127.68, 127.09.

4-methoxyphenylbenzene, 7¢?

White solid (Yield: 89%). The crude product was purified by column chromatography using
silica gel (60-120 mesh) with 1% of EtOAc in hexane.

14 NMR (400 MHz, CDCl5) 6 (ppm): 7.59 — 7.50 (m, 4H), 7.42 (t, J = 7.7 Hz, 2H), 7.33 — 7.29
(m, 1H), 6.99 (d, J = 8.8 Hz, 2H), 3.86 (s, 3H).

13C NMR (100 MHz, CDCl3) & (ppm): 159.39, 140.93, 132.84, 128.83, 128.27, 126.85, 126.77,
114.86, 114.30, 55.45.

4-nitrophenylbenzene, 7d®

)= )

White solid (Yield: 87%). The crude product was purified by column chromatography using
silica gel (60-120 mesh) with hexane.

1H NMR (400 MHz, CDCl3) & (ppm): 8.30 (d, J = 8.9 Hz, 2H), 7.77 — 7.71 (m, 2H), 7.63 (dd, J =
8.2, 1.2 Hz, 2H), 7.53 — 7.43 (m, 3H).

13C NMR (100 MHz, CDCl3) & (ppm): 147.46, 147.21, 138.93, 129.26, 129.02, 127.91, 127.49,
124.21.

4-bromophenylbenzene, 7e!*

AW

528



White solid (Yield: 73%). The crude product was purified by column chromatography using
silica gel (60-120 mesh) with hexane.

1H NMR (400 MHz, CDCl5) 6 (ppm): 7.60 — 7.52 (m, 4H), 7.49 — 7.41 (m, 4H), 7.40 — 7.34 (m,
1H).

13C NMR (100 MHz, CDCl3) & (ppm): 140.24, 140.11, 132.68, 132.54, 131.97, 129.01, 128.85,
127.75, 127.05, 121.64.

4-cyanophenylbenzene, 7f°

WaWar

White solid (Yield: 75%). The crude product was purified by column chromatography using
silica gel (60-120 mesh) with hexane.

1H NMR (400 MHz, CDCl3) 6 (ppm): 7.75 —7.71 (m, 2H), 7.70 — 7.67 (m, 2H), 7.59 (dd, J = 8.2,
1.1 Hz, 2H), 7.52 = 7.46 (m, 2H), 7.45 — 7.40 (m, 1H).

13C NMR (100 MHz, CDCl3) & (ppm): 145.79, 139.29, 132.71, 129.77, 128.77, 127.84, 127.34,
119.05, 111.01.

4-fluorophenylbenzene, 7g*>

VeV

White solid (Yield: 66%). The crude product was purified by column chromatography using
silica gel (60-120 mesh) with hexane.

1H NMR (400 MHz, CDCl3) & (ppm): 7.57 (dd, J = 7.9, 4.3 Hz, 4H), 7.46 (t, J = 7.6 Hz, 2H), 7.36
(dd, J=8.4,6.4 Hz, 1H), 7.15 (t, J = 8.7 Hz, 2H).

13C NMR (100 MHz, CDCl3) & (ppm): 163.79, 161.45, 140.37, 137.44, 128.91, 128.82, 128.74,
127.35,127.12,115.80, 115.59.

4-methylphenylbenzene, 7h'*
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White solid (Yield: 71%). The crude product was purified by column chromatography using
silica gel (60-120 mesh) with hexane.

1H NMR (400 MHz, CDCls) & (ppm):7.63 — 7.59 (m, 2H), 7.52 (d, J = 8.1 Hz, 2H), 7.45 (t, J = 7.7
Hz, 2H), 7.36 (d, J = 7.4 Hz, 1H), 7.28 — 7.24 (m, 2H), 2.42 (s, 3H).

13C NMR (100 MHz, CDCl3) & (ppm): 141.18, 138.42, 136.90, 131.07, 129.91, 129.48, 128.71,
126.99, 21.10.

2-iodophenylbenzene, 7i'®

1
White solid (Yield: 72%). The crude product was purified by column chromatography using

silica gel (60-120 mesh) with 1% of EtOAc in hexane.

IH NMR (400 MHz, CDCl5) & (ppm): 7.98 (dd, J = 8.0, 0.8 Hz, 1H), 7.48 — 7.31 (m, 7H), 7.05
(td, J = 7.8, 1.8 Hz, 1H).

13C NMR (100 MHz, CDCl3) & (ppm): 146.75, 144.41, 139.58, 130.16, 129.36, 128.85,
128.19,128.03, 127.72, 98.69.

n-(4-chlorophenyl)toluene, 8a%°

/|
] CI
NS

After completion of the reaction, product was extracted in 25 mL ethyl acetate and dried
over anhydrous sodium sulphate. The solvent was removed under reduced pressure. All
isomeric products (ortho, meta and para) were collected together from other reaction
impurities by column chromatography over silica gel (100-200 mesh) using 3% EtOAc in
hexane mixture. Total yield was calculated by taking weight of obtained mixture of
products. This mixture of products was subjected to 'H NMR spectroscopic characterization.
The percentage of different regio-isomers was calculated by relative integration of the

protons arising from the respective isomers.

n-(4-bromophenyl)toluene, 8b

/ |
TR < :}—Br
NS
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After completion of the reaction, product was extracted in 25 mL ethyl acetate and dried
over anhydrous sodium sulphate. The solvent was removed under reduced pressure. All
isomeric products (ortho, meta and para) were collected together from other reaction
impurities by column chromatography over silica gel (100-200 mesh) using 5% EtOAc in
hexane mixture. Total yield was calculated by taking weight of obtained mixture of
products. This mixture of products was subjected to 'H NMR spectroscopic characterization.
The percentage of different regio-isomers was calculated by relative integration of the

protons arising from the respective isomers.

n-(4-nitrophenyl)toluene, 8c*

~ ] 2

After completion of the reaction, product was extracted in 25 mL ethyl acetate and dried
over anhydrous sodium sulphate. The solvent was removed under reduced pressure. All
isomeric products (ortho, meta and para) were collected together from other reaction
impurities by column chromatography over silica gel (100-200 mesh) using 2% EtOAc in
hexane mixture. Total yield was calculated by taking weight of obtained mixture of
products. This mixture of products was subjected to 'H NMR spectroscopic characterization.
The percentage of different regio-isomers was calculated by relative integration of the

protons arising from the respective isomers.

n-(4-methoxyphenyl)toluene, 8d*°

/ ]
- : :>—0Me
NS

After completion of the reaction, product was extracted in 25 mL ethyl acetate and dried
over anhydrous sodium sulphate. The solvent was removed under reduced pressure. All
isomeric products (ortho, meta and para) were collected together from other reaction
impurities by column chromatography over silica gel (100-200 mesh) using 3% EtOAc in
hexane mixture. Total yield was calculated by taking weight of obtained mixture of

products. This mixture of products was subjected to *H NMR spectroscopic characterization.
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The percentage of different regio-isomers was calculated by the relative integration of the

protons arising from the respective isomers.

3,4-dimethyl-1,1'-biphenyl, 9a7:18

AN
S\
After completion of the reaction, the product was extracted in 25 mL ethyl acetate and
dried over anhydrous sodium sulphate. The solvent was removed under reduced pressure.
All isomeric products (ortho and meta) were collected from other reaction impurities using
column chromatography over silica gel (100-200 mesh) using 1% EtOAc in a hexane mixture.
The total yield was calculated by taking the weight of the obtained product mixture. This
mixture of products was subjected to 'H NMR spectroscopic characterization. The
percentage of different regio-isomers was calculated by the relative integration of the

protons arising from the respective isomers.

4'-Nitro-3,4-dimethyl-1,1'-biphenyl, 9b*°

K-

After completion of the reaction, the product was extracted in 25 mL ethyl acetate and
dried over anhydrous sodium sulphate. The solvent was removed under reduced pressure.
All isomeric products (ortho and meta) were collected from other reaction impurities using
column chromatography over silica gel (100-200 mesh) using 1% EtOAc in hexane mixture.
The total yield was calculated by taking the weight of the obtained mixture of products. This
mixture of products was subjected to 'H NMR spectroscopic characterization. The
percentage of different regio-isomers was calculated by the relative integration of the

protons arising from the respective isomers.

4'-Bromo-3,4-dimethyl-1,1'-biphenyl, 9¢*°

| :—@—Br 532



After completion of the reaction, the product was extracted in 25 mL ethyl acetate and
dried over anhydrous sodium sulphate. The solvent was removed under reduced pressure.
All isomeric products (ortho and meta) were collected from other reaction impurities using
column chromatography over silica gel (100-200 mesh) using 2% EtOAc in hexane mixture.
The total yield was calculated by taking the weight of the obtained mixture of products. This
mixture of products was subjected to 'H NMR spectroscopic characterization. The
percentage of different regio-isomers was calculated by the relative integration of the

protons arising from the respective isomers.

4'-Fluoro-3,4-dimethyl-1,1'-biphenyl, 9d%!

| \_O—F
=
After completion of the reaction, the product was extracted in 25 mL ethyl acetate and
dried over anhydrous sodium sulphate. The solvent was removed under reduced pressure.
All isomeric products (ortho and meta) were collected from other reaction impurities using
column chromatography over silica gel (100-200 mesh) using 1% EtOAc in hexane mixture.
The total yield was calculated by taking the weight of the obtained mixture of products. This
mixture of products was subjected to 'H NMR spectroscopic characterization. The
percentage of different regio-isomers was calculated by the relative integration of the

protons arising from the respective isomers.

4'-Nitro-3,5-dimethyl-1,1'-biphenyl, 10a%%23

After completion of the reaction, the product was extracted in 25 mL ethyl acetate and
dried over anhydrous sodium sulphate. The solvent was removed under reduced pressure.
All isomeric products (ortho and meta) were collected from other reaction impurities using
column chromatography over silica gel (100-200 mesh) using 3% EtOAc in hexane mixture.
The total yield was calculated by taking the obtained product mixture's weight. This mixture

of products was subjected to 'H NMR spectroscopic characterization. The percentage of
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different regio-isomers was calculated by the relative integration of the protons arising from

the respective isomers.

4'-Bromo-3,5-dimethyl-1,1'-biphenyl, 10b?*

N
=

After completion of the reaction, the product was extracted in 25 mL ethyl acetate and
dried over anhydrous sodium sulphate. The solvent was removed under reduced pressure.
All isomeric products (ortho and meta) were collected from other reaction impurities using
column chromatography over silica gel (100-200 mesh) using 1% EtOAc in hexane mixture.
The total yield was calculated by taking the obtained product mixture's weight. This mixture
of products was subjected to *H NMR spectroscopic characterization. The percentage of
different regio-isomers was calculated by the relative integration of the protons arising from

the respective isomers.

4-chloro-2’,5’-dimethylbiphenyl, 11a%°

CI

White solid (Yield: 78%). The crude product was purified by column chromatography using
silica gel (60-120 mesh) with hexane.

1H NMR (400 MHz, CDCl3) 6 (ppm): 7.43 — 7.37 (m, 2H), 7.29 — 7.25 (m, 2H), 7.18 (d, J = 7.7
Hz, 1H), 7.11 (d, J = 7.8 Hz, 1H), 7.04 (s, 1H), 2.37 (s, 3H), 2.23 (s, 3H).

13C NMR (100 MHz, CDCl3) & (ppm): 140.60, 135.43, 132.81, 132.18, 130.59, 130.45, 129.58,
128.31, 20.96, 19.95.

4-bromo-2’,5’-dimethylbiphenyl, 11b%°
VW

White solid (Yield: 66%). The crude product was purified by column chromatography using
silica gel (60-120 mesh) with hexane.

1H NMR (400 MHz, CDCl5) 6 (ppm): 7.51 (dd, J = 8.4, 2.0 Hz, 2H), 7.20 — 7.11 (m, 3H), 7.08 (d,
J=1.9 Hz, 1H), 7.00 (d, J = 2.0 Hz, 1H), 2.33 (s, 3H), 2.19 (s, 3H).
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13C NMR (100 MHz, CDCl3) & (ppm): 140.99, 140.49, 135.37, 132.04, 131.18, 130.88, 130.39,
130.31, 128.30, 20.90, 19.89.

4-nitro-2’,5’-dimethylbiphenyl, 11c%¢
(SO

White solid (Yield: 70%). The crude product was purified by column chromatography using
silica gel (60-120 mesh) with hexane.

1H NMR (400 MHz, CDCl3) 6 (ppm): 8.29 (d, J = 8.5 Hz, 2H), 7.50 (d, J = 8.9 Hz, 2H), 7.22 (d, J
=7.7 Hz, 1H), 7.16 (dd, J = 7.6, 1.9 Hz, 1H), 7.06 (d, J = 1.9 Hz, 1H), 2.39 (s, 3H), 2.24 (s, 3H).
13C NMR (100 MHz, CDCl3) & (ppm): 149.11, 139.54, 135.77, 132.12, 131.62, 130.76, 130.18,
129.26, 123.48, 20.98, 19.92.

4-methoxy-2’,5’-dimethylbiphenyl, 11d?’
(hprom

White solid (Yield: 74%). The crude product was purified by column chromatography using
silica gel (60-120 mesh) with hexane.

IH NMR (400 MHz, CDCl5) & (ppm): 7.27 (d, J = 8.4 Hz, 2H), 7.17 (d, J = 7.8 Hz, 1H), 7.12 -
7.07 (m, 2H), 6.97 (d, J = 8.4 Hz, 2H), 3.88 (s, 3H), 2.37 (s, 3H), 2.26 (s, 3H).

13C NMR (100 MHz, CDCl3) & (ppm): 158.55, 141.46, 135.24, 134.63, 132.39, 130.74, 129.09,
128.29, 127.75, 114.27, 113.55, 55.37, 20.99, 20.10.

2-phenylmesitylene, 1238

QY

White solid (Yield: 76%). The crude product was purified by column chromatography using
silica gel (60-120 mesh) with hexane.

14 NMR (400 MHz, CDCls) & (ppm): 7.43 (t, J = 7.3 Hz, 2H), 7.35 (d, J = 7.0 Hz, 1H), 7.20 —
7.11 (m, 2H), 6.96 (s, 2H), 2.35 (s, 3H), 2.02 (s, 6H).
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13C NMR (100 MHz, CDCl3) & (ppm): 143.61, 141.27, 139.29, 136.06, 131.13, 129.38, 128.44,
128.12,127.13, 126.58, 21.10, 20.81.

1-chloro-4-mesitylbenzene, 12b?

! Y )¢

White solid (Yield: 82%). The crude product was purified by column chromatography using
silica gel (60-120 mesh) with hexane.

1H NMR (400 MHz, CDCl5) 6 (ppm): 7.40 (d, J = 8.4 Hz, 2H), 7.08 (d, J = 8.4 Hz, 2H), 6.95 (s,
2H), 2.34 (s, 3H), 2.00 (s, 6H).

13C NMR (100 MHz, CDCl3) & (ppm): 139.60, 137.85, 137.04, 136.00, 132.58, 130.84, 128.75,
128.26, 21.12, 20.80.

1-nitro-4-mesitylbenzene, 12¢®

e

White solid (Yield: 77%). The crude product was purified by column chromatography using
silica gel (60-120 mesh) with hexane.

1H NMR (400 MHz, CDCl5) & (ppm): 8.30 (d, J = 8.8 Hz, 2H), 7.33 (d, J = 8.8 Hz, 2H), 6.97 (s,
2H), 2.34 (s, 3H), 1.99 (s, 6H).

13C NMR (100 MHz, CDCl5) & (ppm): 148.66, 146.94, 137.82, 136.86, 135.36, 130.57, 128.49,
123.86, 21.13, 20.71.

1-bromo-4-mesitylbenzene, 12d3
SaWas

White solid (Yield: 67%). The crude product was purified by column chromatography using
silica gel (60-120 mesh) with hexane.

1H NMR (400 MHz, CDCl5) 6 (ppm): 7.55 (d, J = 8.4 Hz, 2H), 7.02 (d, J = 8.3 Hz, 2H), 6.94 (s,
2H), 2.33 (s, 3H), 1.99 (s, 6H).

13C NMR (100 MHz, CDCl3) & (ppm): 140.08, 137.88, 137.07, 135.92, 131.70, 131.22, 128.26,
120.72,21.12, 20.81.
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1-cyano-4-mesitylbenzene, 12¢28

CN

White solid (Yield: 66%). The crude product was purified by column chromatography using

#

silica gel (60-120 mesh) with hexane.

14 NMR (400 MHz, CDCls) & (ppm): 7.72 (d, J = 8.2 Hz, 2H), 7.27 (d, J = 8.3 Hz, 2H), 6.96 (s,
2H), 2.34 (s, 3H), 1.97 (s, 6H).

13C NMR (100 MHz, CDCl3) & (ppm): 146.53, 137.68, 137.24, 135.42, 132.42, 130.45, 128.45,
119.13, 110.72, 21.13, 20.71.

1-fluoro-4-mesitylbenzene, 12f?°
oV

White solid (Yield: 71%). The crude product was purified by column chromatography using

#

silica gel (60-120 mesh) with hexane.

'H NMR (400 MHz, CDCl3) & (ppm): 7.14 — 7.07 (m, 4H), 6.94 (s, 2H), 2.33 (s, 3H), 1.99 (s,
6H).

13C NMR (100 MHz, CDCl5) & (ppm): 163.00, 160.67, 138.07, 136.24, 130.96, 130.88, 128.20,
115.50, 115.29, 21.10, 20.82.

1-methyl-4-mesitylbenzene, 12g8

White solid (Yield: 67%). The crude product was purified by column chromatography using

#

silica gel (60-120 mesh) with hexane.

IH NMR (400 MHz, CDCl3) & (ppm): 7.23 (d, J = 7.6 Hz, 2H),7.03 (d, J = 8.0 Hz, 2H), 6.94 (s,
2H), 2.41 (s, 3H), 2.33 (s, 3H), 2.01 (s, 6H).

13C NMR (100 MHz, CDCl3) & (ppm): 139.01, 138.00, 136.40, 136.14, 135.95, 129.42, 129.15,
129.06, 128.01, 127.72,127.01, 21.23, 21.00, 20.77.

1-iodo-2-mesitylbenzene, 12h?

SaV
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White solid (Yield: 62%). The crude product was purified by column chromatography using
silica gel (60-120 mesh) with hexane.

1H NMR (400 MHz, CDCl3) 6 (ppm): 7.96 (dd, J = 8.0, 0.8 Hz, 1H), 7.42 (dd, J = 7.5, 1.0 Hz,
1H), 7.15 (dd, J = 7.6, 1.6 Hz, 1H), 7.08 — 7.04 (m, 1H), 6.97 (s, 2H), 2.37 (s, 3H), 1.95 (s, 6H).
13C NMR (100 MHz, CDCl3) & (ppm): 146.14, 141.27, 139.13, 137.39, 135.58, 129.85, 128.59,
128.51, 128.17, 100.94, 21.28, 20.35.

4'-Chloro-2-nitro-1,1'-biphenyl, 13a®>

Ty~

White solid (Yield: 82%). The crude product was purified by column chromatography using
silica gel (60-120 mesh) with 1% of EtOAc in hexane.

'H NMR (400 MHz, CDCl5) & (ppm): 7.93 — 7.86 (m, 1H), 7.76 — 7.69 (m, 1H), 7.47 — 7.38 (m,
3H), 7.32 = 7.22 (m, 2H).

13C NMR (100 MHz, CDCl5) & (ppm): 149.18, 135.32, 132.57, 131.94, 129.48, 129.37, 129.01,
128.73, 128.66, 127.78, 124.36, 124.31.

4'-methoxy-n-nitro-1,1'-biphenyl, 13b*>
NO,

After completion of the reaction, product was extracted in 25 mL ethyl acetate and dried
over anhydrous sodium sulphate. The solvent was removed under reduced pressure. All
isomeric products (ortho, meta and para) were collected together from other reaction
impurities by column chromatography over silica gel (100-200 mesh) using 3% EtOAc in
hexane mixture. Total yield was calculated by taking weight of obtained mixture of
products. This mixture of products was subjected to 'H NMR spectroscopic characterization.
The percentage of different regio-isomers was calculated by relative integration of the

protons arising from the respective isomers.

10.H NMR and 3C NMR spectra of the products:
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Figure S20: 'H NMR spectrum of 5b.
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11. Computational details:

Coordinates of all the optimized geometries:
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-2.358147

-0.009533

0.386461

-2.797074 -0.156195 2.695441

-1.071221

-1.042233

-3.852428

-3.798731

0.201341

0.970768

0.403100

2.329357

2.878452

3.073703

4.474470

4.996323

5.214444

4.501204

5.044410

3.100216

2.382890

2.951404

1.024178

0.476610

0.230798

-1.307821

1.380176

-1.265270

1.327917

-1.193851

-2.368191

-3.262290

-2.360141

-3.263564

-1.175174

-1.161558

-2.074452

-0.005120

1.161205

2.070130

1.191828

2.393906

3.294621

2.421926

3.327756

1.242592

-0.323206

0.317646

-0.120608

-0.366421

-0.330361

-0.683825

-0.919274

-0.700606

-0.955651

-0.385750

-0.409655

-0.683952

-0.125592

0.182121

0.426403

0.215955

0.525300

0.744430

0.547018

0.784447

0.281570

586



0.921182

2.351009

6.699027

7.422510

6.887317

8.815947

9.353889

9.518462

10.604168

8.813783

9.349715

7.420275

6.882333

-3.757436

-2.780740

-4.838540

-4.724134

-6.056781

-6.923996

-6.153444

-7.092908

-5.024641

-4.997758

-6.105309

-7.066948

-5.957836

-6.805982

-4.714941

-4.562170

-3.659283

-2.666129

0.017582

0.010731

-0.015498

-1.125354

-1.974641

-1.136709

-2.002806

-0.036605

-0.044583

1.074056

1.932451

1.083496

1.941364

-2.589726

-2.953427

-3.438997

-4.508403

-2.880648

-3.510232

-1.501129

-1.051253

-0.710044

0.766872

1.546038

1.088829

2.928547

3.551839

3.497868

4.570332

2.655143

3.024444

-0.026039

-0.061460

-0.154674

0.313727

0.728105

0.284845

0.659623

-0.209570

-0.230354

-0.676573

-1.071473

-0.651233

-1.043857

0.034840

0.331315

-0.181477

-0.045615

-0.564146

-0.736800

-0.723494

-1.021029

-0.492070

-0.621690

-0.968473

-1.168484

-1.047008

-1.312577

-0.776171

-0.822446

-0.434941

-0.202384

S87



12. Reference:

bl o

10.
11.

12.
13.

14.

15.

16.
17.

18.
19.

20.
21.
22.
23,

R. C. Haddon, R. Rayford and A. M. Hirani, J. Org. Chem., 1981, 46, 4587-4588.

L. Bensch, I. Gruber, C. Janiak, T. J. J. Mueller, Chem.-Eur. J., 2017, 23, 10551-10558.

F. Mohr, S. A. Binfield, J. C. Fettinger and A. N. Vedernikov, J. Org. Chem., 2005, 70,
4833-4839.

SMART, Version 5.0, Bruker AXS, Inc., Analytical X-ray Systems, 5465 East Cheryl
Parkway, Madison, W1 53711 5373, 2000.

SAINT, Version 6.02, Bruker AXS, Inc., Analytical X-ray Systems, 5465 East Cheryl
Parkway, Madison, W1 53711 5373, 2000.

G. M. Sheldrick, SADABS, Program For Empirical Correction of Area Detector Data,
University of Gottingen, Germany, 2000.

G. M. Sheldrick, SHELXS97 and SHELXL97, Program For Crystal Structure Refinement,
University of Gottingen, Germany, 1997.

S. Chakraborty, J. Ahmed, B. K. Shaw, A. Jose, and S. K. Mandal, Chem. Eur. J., 2018, 24,
17651.

A. Nagaki, K. Hirose, Y. Moriwaki, K. Mitamura, K. Matsukawa, N. Ishizukac and J.
Yoshida, Catal. Sci.Technol., 2016, 6, 4690.

K. Funaki, T. Sato and S. Oi, Org. Lett., 2012, 14, 6186.

E. L. Kolychev, A. F. Asachenko, P. B. Dzhevakov, A. A. Bush, V. V. Shuntikov, V. N.
Khrustalevc and M. S. Nechaev, Dalton Trans., 2013, 42, 6859.

S. Paul, K. K. Das, S. Manna and S. Panda, Chem. Eur. J., 2020, 26, 1922.

P. K. Vardhanapu, J. Ahmed, A. Jose, B. K. Shaw, T. K. Sen, A. A. Mathews and S. K.
Mandal, J. Org. Chem., 2019, 84, 289.

E. Shirakawa, K. -i. Itoh, T. Higashino and T. Hayashi, J. Am. Chem. Soc., 2010, 132,
15537.

J. Ahmed, S. Chakraborty, A. Jose, P. Sreejyothi and S. K. Mandal, J. Am. Chem. Soc.,
2018, 140, 8330.

P. Klein, V. D. Lechner, T. Schimmel and L. Hintermann, Chem. Eur. J., 2020, 26, 176.

Y. Liu, Y. Feng, J. Nie, S. Xie, X. Pen, H. Hong, X. Chen, L. Chen and Y. Li, Chem.
Commun., 2023, 59, 11232.

G.-Q. Chen, W. Fang, Y. Wei, X.-Y. Tang and M. Shi, Chem. Commun., 2016, 52, 10799.
Arumugam, W. Kaminsky, N. S. P. Bhuvaneshc and D. Nallasamy, RSC Adv., 2015, 5,
59428.

T. Yoshida, Y. Honda, T. Morofuji and N. Kano, Org. Lett., 2021, 23, 9664.

C. Fricke, A. Dahiya, W. B. Reid and F. Schoenebeck, ACS Catal., 2019, 9, 9231.

D. Kim, G. Choi, W. Kim, D. Kim, Y. K. Kang and S. H. Hong, Chem. Sci., 2021, 12, 363.
X.-B. Lan, F.-M. Chen, B.-B. Ma, D.-S. Shen and F.-S. Liu, Organometallics., 2016, 35,
3852.

588



24. A. Operamolla, O. H. Omar, F. Babudri, G. M. Farinola and F. Naso, J. Org. Chem., 2007,
72, 10272.

25. T. E. Storr and M. F. Greaney, Org. Lett., 2013, 15, 1410.

26. C. Qinand W. Lu, J. Org. Chem., 2008, 73, 7424.

27. H. Zhao, J. Shen, J. Guo, R. Ye and H. Zeng, Chem. Commun., 2013, 49, 2323.

28. D. Dey, A. Kundu, M. Roy, S. Pal and D. Adhikari, Catal. Sci. Technol., 2022, 12, 1934.
29. V. Gauchot, D. R. Sutherland and A.-L. Lee, Chem. Sci., 2017, 8, 2885.

589



