Supporting Information

Crucial Role of Oxygen Vacancies for the Efficient Hydrodeoxygenation of Ligninbased Phenolic Model Compounds with Ni/Ti_{1-x}Zr_xO₂

Hadi Ali, ^{ab} Neeraj Sharma^a, Sahil Kumar, ^a Joris W. Thybaut,^c Jeroen Lauwaert,^d Xiaolei Zhang,^e Sushil Kumar Kansal ^f and Shunmugaval Saravanamurugan ^{*a}

^a Laboratory of Bioproduct Chemistry, BRIC - National Agri-Food and Biomanufacturing Institute (Formerly Center of Innovative and Applied Bioprocessing), Sector 81 (knowledge City), Mohali-140306, Punjab, India. E-mail: saravana@ciab.res.in

^b Department of Chemistry, University of Ladakh, Kargil Campus, Ladakh-194105.

^c Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 125, 9052, Ghent, Belgium.

^d Industrial Catalysis and Adsorption Technology (INCAT), Ghent University, Valentin Vaerwyckweg 1, 9000, Ghent, Belgium.

^e Department of Chemical and Process Engineering, University of Strathclyde.

^fDr. S. S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh-160014, India.

		-			
Catalysts	O ₂ (mmol/g)				
	Peak I (<250 °C)	Peak II (250-400 °C)	Peak III (>400 °C)		
Ni/ZrO ₂	0.037	0.059	0.197		
Ni/Ti _{0.05} Zr _{0.95}	0.054	0.092	0.139		
Ni/Ti _{0.25} Zr _{0.75}	0.092	0.225	0.149		
Ni/Ti _{0.50} Zr _{0.50}	0.088	0.340	0.186		
Ni/Ti _{0.25} Zr _{0.75}	0.112	0.326	0.218		
Ni/Ti _{0.95} Zr _{0.05}	0.109	0.221	0.305		
Ni/TiO ₂	0.037	0.097	0.158		

Table S1. The data obtained from the O2-TPD profile (Figure 5) of Ni-supported mono and mixed oxide catalysts

Figure S1: (A and B) Physisorption isotherm and (C) BJH pore size distribution of various Nisupported mono and mixed oxide catalysts.

Figure S2. HRTEM images of (a) Ni/TiO₂, (b) Ni/ZrO₂ and (c-d) Ni/Ti_{0.50}Zr_{0.50}O₂ catalysts.

٦ 500nm

Г

Ni Kα1

500nm Ti Kα1

Map Data 3

Zr Kα1

500nm

500nm

Figure S3. EDS elemental mapping images of a) Ni/TiO₂, b) Ni/ZrO₂, and c) Ni/Ti_{0.50}Zr_{0.50}O₂.

Figure S4. XPS spectra of Ni2p of various Ni-supported mono and mixed metal oxide catalysts.

Figure S5. In-situ DRIFT spectra of NH₃ desorbed at various temperature (A) Ni/TiO₂ and (B) Ni/ZrO₂ catalyst.

Figure S6. Catalytic activity of Ni/Ti_{0.50}Zr_{0.50}O₂ and previous studies related to Ni-based catalysts for HDO of anisole

Figure S7. The recyclability of the Ni/Ti_{0.50}Zr_{0.50}O₂ catalyst for anisole HDO. (Reaction conditions: $m_{cat:anisole} = 1:2$, 20 g decane, 230 °C, 15 min, 30 bar H₂,450rpm.)

Figure S8. XRD pattern of fresh and 3^{rd} use of Ni/ $Ti_{0.50}Zr_{0.50}O_2$ catalysts

Figure S9. TGA analysis of the spent catalyst

Entry	Catalysts	Reaction conditions	Conv.	Selec.	Reference
			(%)	DeO (%)	
1	3wt%Ni/Ti _{0.50} Zr _{0.50} O ₂	230 °C, 30 bar H ₂ , 3 h	>99	94%	This work
2	30wt% Ni/Al ₂ O ₃ -ZrO ₂	230 °C, 10 bar H ₂ , 3 h	100	77.6	[1]
3	5wt% Ni/TiO ₂ -ZrO ₂	300 °C, 40bar H ₂ , 4h	60	~87	[2]
4	10wt% Ni/SiO ₂	300 °C, 50 bar H ₂ , 16 h	>99	80.4	[3]
5	Ni ₂ P/Ti _{0.98} Ce _{0.02} O ₂	300 °C, 7 bar H ₂ , 0.2 h	29.2	79.2	[4]
6	3wt% Ni/Nb ₂ O ₅	240 °C, 20bar H ₂ , 1 h	90	91.0	[5]
7	90wt% Ni/Nb ₂ O ₅	240 °C, 30bar H ₂ , 4h	>99	100	[6]
8	90wt%Ni /SiO2	280 °C, 60bar H ₂ , 0.75h	100	40	[7]
9	10wt%Ni/SBA-15	280°C, 35bar H ₂ , 6h	100	100	[8]
10	5wt%Ni/HSZ	200°C, 68bar H ₂ , 2.3 h	98	84	[9]
11	4.6% hie-Ni/ZSM-5	200 °C, 60 bar H ₂ , 2h	100	88.1	[10]
		decalin			
12	4.96% Ni/Al-MCM-	280 °C, 48 bar H ₂ , 6h	96.5	97.6	[11]
	41(90)				
13	60wt% Ni 5wt%Cu	320 °C, 60bar H ₂ , 2.5h	~85	100	[12]
	30wt%Si				
14	Ni ₁ Mo ₃ N/C	260 °C, 4 h, 10 bar H ₂ ,	99.9	97.8	[13]
15	Ni/C-H ₃ [P-	240°C, 10 bar H ₂ , 3 h	100	100	[14]
	$(Mo_3O_{10})_4]*13H_2O$				
16	Ni/C	230 °C, 10bar H ₂ , 2 h,	15	57.4	[15]
		water		(benzene)	
17	Ni@C-500	230°C, 10 bar N ₂ , 2 h	15.4	57.4	[16]
				(benzene)	
18	NiPt/S	280 °C, 73 bar H ₂ , 6 h	98.5	72	[17]

Table S2. Catalytic activity of $3wt\%Ni/Ti_{0.50}Zr_{0.50}O_2$ and previous studies related to Ni-
based catalysts for HDO of anisole

References

- 1. Y. Zhang, G. Fan, Y. Lin, L. Yang and F. Li, Appl. Catal. A: Gen., 2022, 631, 118481.
- R. Rios-Escobedo, E. Ortiz-Santos, J. A. Colín-Luna, J. N. Díaz de León, P. del Angel, J. Escobar and J. A. de los Reyes, *Top. Catal*, 2022, 1-14.
- 3. X. Zhang, W. Tang, Q. Zhang, T. Wang and L. Ma, Appl. Energy, 2018, 227, 73-79.
- 4. P. Pitakjakpipop, C. Song, *Energy Fuels*, 2023, **37**, 8311–8323.
- 5. H. Ali, T. Vandevyvere, J. Lauwaert, S. K. Kansal, M. K. Sabbe, S. Saravanamurugan, and J. W. Thybaut, Catal. Sci. Tech., 2023, 13, 1140-1153.
- J. Xu, P. Zhu, I. H. El Azab, B. B. Xu, Z. Guo, A. Y. Elnaggar, G. A. Mersal, X. Liu, Y. Zhi, Z. Lin and H. Algadi, *Chin. J. Chem. Eng.*, 2022, 49, 187-197.
- S. A. Khromova, A. A. Smirnov, O. A. Bulavchenko, A. A. Saraev, V. V. Kaichev, S. I. Reshetnikov and V. A. Yakovlev, *Appl. Catal. A: Gen.*, 2014, 470, 261-270.
- H. Vargas-Villagran, M. A. Flores-Villeda, I. Puente-Lee, D. A. Solis-Casados, A. Gomez-Cortes, G. Diaz-Guerrero and T. E. Klimova, *Catal. Today*, 2020, 349, 26-41.
- W. Li, F. Li, H. Wang, M. Liao, P. Li, J. Zheng, C. Tu, and R. Li, *Mol. Catal.*, 2020, 480, 110642.
- 10. M. Yusuf, G. Leeke, J. Wood, Energy Fuels, 2023, 37, 1225-1237.
- 11. L. H. Molina-Conde, A. Suarez-Mendez, D.E. Perez-Estrada, T.E. Klimova, *Applied Catalysis A, General*, 2023, **663**, 119313.
- 12. N. S. Nesterov, A. A. Smirnov, V. P. Pakharukova, V. A. Yakovlev, and O. N. Martyanov, *Catal. Today*, 2021, **379**, 262-271.
- 13. S. Jiang, R. Shu, A. Wang, Z. Deng, Y. Xiao, J. Li, Q. Menga, Q. Zhang, *Green Chemistry*, 2024, **26**, 9330–9345.
- 14. T. Yin, Y. Luo, R.R. Nayak, R. Shu, Z. Tian, C. Wang, Y. Chen, N.K. Gupta, Chem Asian J., 2025, **20**, e202400999.
- 15. X. Liu, H. Shen, and H. Li, 2024. ACS Sustain. Chem. Eng., 2024, 12, 7158-7169.
- 16. X. Liu, H. Shen, H. Li, ACS Sustainable Chem. Eng., 2024, 12, 7158-7169.
- D.E. Pérez-Estrada, H. Vargas-Villagrán, R. Mendoza-Cruz, T.E. Klimova, *Nanoscale*, 2024, 16, 11575.