1	Supporting information				
2	Techno-Economic and Life Cycle Analyses of the Synthesis of a Platinum-Strontium				
3	Titanate Catalyst				
4	Sultana Ferdous, ¹ Ulises R. Gracida-Alvarez, ² Magali Ferrandon, ³ Massimiliano Delferro, ³				
5	Pahola Thathiana Benavides, ^{2*} and Meltem Urgun-Demirtas ^{1*}				
6	¹ Applied Materials Division, Argonne National Laboratory, 9700 S Cass Ave, Lemont, IL,				
7	60439, USA				
8	² LCA and Technology Assessment Department, Energy Systems and Infrastructure Assessment				
9	Division, Argonne National Laboratory, 9700 S Cass Ave, Lemont, 60439, USA				
10	³ Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S Cass Ave,				
11	Lemont, IL, 60439, USA				
12	*Corresponding authors emails: pbenavides@anl.gov (Pahola Thathiana Benavides),				
13	demirtasmu@anl.gov (Meltem Urgun-Demirtas)				
14	Section 1: Scaled-up production analysis				
15	Section 2: Techno-economic analysis methods				
16	Section 3: Life-cycle analysis methods.				
17	Section 4: Supplementary results for techno-economic analysis				
18	Section 5: Supplementary results for life-cycle analysis				
19					
20	number of rages: 8				
21	Number of Tables: 11				
22					
23					

24 Section 1: Scaled-up production analysis

Equipment type	Material of construction	Quantity	Specifications	Capacity (unit)	Purchased price/unit (USD)	Reference
Reactor (jacketed, agitated)	stainless steel	1	Volume	1.5 m ³	\$162,405	CatCost ¹
Reactor (jacketed, agitated)	stainless steel	1	Volume	12 m ³	\$455,836	CatCost ¹
Muffle Furnace	stainless steel	4	Duty	18 kW	\$20,562	Across International ²
Vacuum Oven	stainless steel	1	Internal volume	47.2 L	\$19,473	Cascade TEK ³
Solid- liquid Separator	stainless steel	1	Bowl volume	23 L	\$275,968	Vendor ⁴
Ozone Generator	carbon steel	1	Duty	25 kW	\$275,000	Vendor ⁵

Table S1. Equipment list for the design process

Table S2. Materials used for 0.99 kg strontium titanate (STO) production

Reactant	Amount (kg)
Strontium hydroxide octahydrate	1.98
Acetic acid	2.33
Titanium tetrachloride	1.34
Ethanol	12.27
Sodium hydroxide	4.04
Nitrogen	7.47
Process water	44.67

31 Table S3. Materials used for 1 kg Pt/STO catalyst production

Reactant	Amount (kg)
Strontium titanate (STO)	0.99
Pentane	2.48
Toluene	10.30
Dodecane	2.97
Trimethyl(methyl-cyclopentadienyl) Platinum (IV)	0.01
Hydrogen gas	0.01
Nitrogen gas	1.27

Table S4. Utility consumption for the design process

Utility	Consumption	Units
5	(/kg catalyst)	
Process water	0.79	m ³
Electricity	26.73	kWh
Natural gas	29.19	MJ

Table S5. Raw materials, chemical, and utilities price list for the design process

Item	Unit	*Cost	Source
Strontium hydroxide octahydrate	\$/kg	2.01	BLD pharm ⁶
Acetic acid	\$/kg	0.54	CatCost ¹
Titanium tetrachloride	\$/kg	2.53	ChemAnalyst ⁷
Ethanol	\$/kg	1.10	Davis et al. ⁸
Sodium hydroxide	\$/kg	0.75	Davis et al. ⁹
Process water	\$/kg	0.0006	Davis et al. ⁸
Toluene	\$/kg	1.02	Davis et al. ⁸
Dodecane	\$/kg	3.81	BLD Pharm ⁶
Pentane	\$/kg	8.28	BVV ¹⁰
Trimethyl(methylcyclopentadienyl)platinum(IV	\$/kg	70,000	Umicore ¹¹
)			
Hydrogen gas	\$/kg	2.26	Davis et al. ⁸
Nitrogen gas	\$/kg	0.02	Airgas ¹²
Natural gas	\$/MMBtu	4.39	U.S. EIA ¹³
Electricity	\$/kWh	0.085	U.S. EIA ¹⁴

38 *Cost adjusted for the analysis basis year 2023.

- ...

49 Section 2: Techno-economic analysis methods

51 Table S6. TEA analysis factored capital expenditures

Item	Cost item	Cost factor ¹
1. Direct capital	• Purchased equipment (PE)	100% of PE
	Installation	60% of PE
	• Instrumentation and controls	26% of PE
	 piping 	31% of PE
	• Electrical	10% of PE
	Buildings	29% of PE
	Yard improvements	12% of PE
	Service facilities	55% of PE
	• Waste treatment	5% of PE
	• Land	6% of PE
2. Indirect capital	• Engineering and supervision	32% of PE
	Construction expenses	34% of PE
	Legal expenses	4% of PE
	Contractor's fee	19% of PE
	Contingency	37% of PE
3. Total fixed capital	Direct capital cost + indirect	
investment (FCI)	capital cost	
Total capital investment	FCI+ working capital (75%	
(TCI)	of PE)	

54 Table S7. TEA analysis factored operating expenditures

Item	Cost item	Cost factors ¹
1. Direct labor cost (DL)	• Direct labor operators	3 operators
	• Direct labor hours per year	26,280 hr/year
	Direct labor rate	48 \$/hr
2. Direct operating costs (LSM)	 Supervisory & clerical labor(L) 	18% of DL
	Laboratory charges	15% of DL
	• Maintenance & repair (M	5% of FCI
	&R)	
	• Operating supplies (S)	15% of M&R
3. Fixed/ Indirect operating cost	Local taxes	2.5% of FCI
	• Insurance	0.8% of FCI
	• Rent	10% of land value
	• Plant overhead	60% of LSM
General expenses	Administration	20% of LSM
-	• Distribution and marketing	10% of op. costs
	Research and development	5% of op. costs

```
56
```

Table S8. Assumptions to estimate the spent catalyst value (\$/kg)

Inputs	Base ¹
Metal to recover	Platinum (Pt)
Pt losses during use	4%
STO losses during use	2%
Metal losses during refining	2%

58 * % By default, the value from reference 1.

61 Section 3: Life-cycle analysis methods.

Table S9. Characteristics of the different electricity sources ¹⁵

Source	U.S. average	California (CA)	Nuclear	Wind
	grid mix	grid mix	power	energy
Residual oil	0.3%	-	-	-
Natural gas	38.5%	42.8%	-	-
Coal	20.6%	3.4%	-	-
Biomass	0.3%	0.9%	-	-
Nuclear	18.9%	8.3%	100%	-
Hydroelectric	6.8%	12.5%	-	-
Geothermal	0.4%	3.8%	-	-
Wind	10.7%	7.4%	-	100%
Solar PV	3.3%	20.3%	-	-
Other	0.4%	0.7%	-	-
GHG emissions	0.440	0.010	0.002	0.000

	(kg CO ₂ e/kWh)		_
64			_
65			
66			
67			
68			
69			
70			
71			
72			
72			
73			
74			
15			
/6	Section 4: Supplementary res	sults for techno-economic analysis	
77 78	Table S10 Estimation of the or	atalyst oost	
/0	Item		Cost (\$/kg
	item		catalyst)
	(Capital Costs (20-year plant life)	Fixed capital investment (FCI)	11.69
	,	Working capital	1.91
	Total capital investment		13.60
	2. Total operating costs		
		Raw materials	800.69
		Process utilities	2.90
		Labor, Supplies, Maintenance, Lab	80.55
		Taxes, Insurances Rent, Overhead	56.35
		General expenses	110.16
	Total operating cost		1,050.65
	3. Selling margin		6/.99
	Catalyst purchase cost		1,132.24
	Spent catalyst cost (SCV)		290.45
70	Thei cataryst cost		042
0			
<u>00</u>			
0.1			

Baseline (No recycling)	842	
Recycling (25%)	822	-2%
Recycling (50%)	803	-5%
Recycling (75%)	784	-7%

82	Table S11.	Solvent	recycling	effect	on the	catalyst	cost
----	------------	---------	-----------	--------	--------	----------	------

83 84		
85		
86		
87		
88		
89		

90 Section 5: Supplementary results for life-cycle analysis

Table S12. Tabulated GHG emissions results from Figure 6 (kg CO₂e/kg catalyst)

Matarials and anarous		Solvent recycling			Clean energy sources			Combined
sources	Baseline	25% 50	50%	<i>6</i> 75%	CA	Nuclear	Wind	strategies
sources			3070		grid	power	energy	
Natural gas	2.0	2.3	2.6	3.0	2.0	2.0	2.0	2.6
Electricity	11.7	11.7	11.7	11.7	7.2	0.1	0.0	0.0
Sodium hydroxide	8.3	8.3	8.3	8.3	6.7	4.3	4.3	4.3
Platinum	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3
Nitrogen	1.6	1.6	1.6	1.6	1.0	0.0	0.0	0.0
Hydrogen	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Strontium hydroxide	3.7	3.7	3.7	3.7	3.5	3.1	3.1	3.1
octahydrate								
Titanium tetrachloride	2.3	2.3	2.3	2.3	2.0	1.5	1.5	1.5
Acetic acid	1.3	1.3	1.3	1.3	1.2	1.0	1.0	1.0
Ethanol	18.0	13.5	9.0	4.5	17.4	16.5	16.5	8.2
Pentane	2.0	1.5	1.0	0.5	2.0	1.8	1.8	0.9
Toluene	10.7	8.0	5.4	2.7	10.7	10.6	10.6	5.3
Dodecane	2.4	1.8	1.2	0.6	2.3	2.2	2.2	1.1
Total	65.6	57.5	49.5	41.6	57.4	44.4	44.3	29.3

References

- 95 1 ChemCatBio, CatCost v1.1.0 https://catcost.chemcatbio.org, 2021.
- 962AcrossInternational,Mufflefurnace,Personalcommunication,97https://www.acrossinternational.com, 2024.2024.2024.2024.2024.
- 98 3 Cascade TEK Solutions, LLC, Vacuum oven, Personal communication,
 99 https://www.cascadetek.com, 2024.
- 100 4 Anonymous vendor, solid-liquid separator, Personal communication, 2024.
- 101 5 Anonymous vendor, Ozone generator, Personal communication, 2023.
- 102 6 BLD pharm, *Strontium hydroxide octahydrate and dodecane*, Personal communication,
 103 https://www.bldpharm.com, 2024.
- 1047ChemAnalyst,*Titaniumtetrachloride*,Personalcommunication,105https://www.chemanalyst.com/Pricing-data/titanium-tetrachloride-1478, 2024.
- 106 8 R. Davis, M. Wiatrowski, C. Kinchin and D. Humbird, Conceptual Basis and TechnoEconomic
- 107 Modeling for Integrated Algal Biorefinery Conversion of Microalgae to Fuels and Products
- 108 2019 NREL TEA Update: Highlighting Paths to Future Cost Goals via a New Pathway for
- 109 Combined Algal Processing, NREL/TP-5100-75168, National Renewable Energy Lab.
 110 (NREL), Golden, CO, 2020.
- 111 9 R. Davis, A. Bartling and L. Tao, *Biochemical Conversion of Lignocellulosic Biomass to* 112 *Hydrocarbon Fuels and Products: 2020 State of Technology and Future Research*, NREL/TP-
- 113 5100-79930, National Renewable Energy Laboratory, Golden, CO, 2021.
- 114 10Building Vision and variety (BVV), *Pentane*, Personal communication, 115 https://shopbvv.com/products/bvv-high-purity-lab-grade-pentane-
- 116 99?variant=32380031271008, 2024.
- 11711Umicore,Trimethyl(methylcyclopentadienyl)platinum(iv),Personalcommunication,118https://pmc.umicore.com, 2024.
- 119 12 Airgas, Nitrogen gas, Personal communication, https://www.airgas.com, 2024.
- 120 13U.S. Energy Information Administration (U.S. EIA), Natural gas prices, 121 https://www.eia.gov/dnav/ng/ng_pri_sum_dcu_nus_m.htm, (accessed August 30, 2024).
- 122 14U.S. Energy Information Administration (U.S. EIA), Electric Power Monthly. Table 5.6.A.
- 123 Average Price of Electricity to Ultimate Customers by End-Use Sector. https://www.eia.gov/electricity/monthly/epm table grapher.php?t=table 5 06 a, 124 (accessed 125 August 30, 2024).
- 126 15 Argonne National Laboratory, Greenhouse gases, Regulated Emissions, and Energy use in
- 127 Technologies Model ® (2023 Excel). https://doi.org/10.11578/GREET-Excel-
- 128 2023/dc.20230907.1 2023.
- 129