Supplementary Information (SI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2025

Electronic Supplementary Information

Electrochemical oxygen evolution catalysis of metal sulfides: a systematic study of electronic effects

Yuuki Sugawara,^a Taisei Uchiyama,^a Maxim Shishkin^{‡a} and Takeo Yamaguchi*^a

^aLaboratory for Chemistry and Life Science, Institute of Integrated Research, Institute of Science Tokyo, R1-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan

[‡](present address) Department of Transdisciplinary Science and Engineering, School of Environment and Society, Institute of Science Tokyo, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan

*Corresponding author E-mail: yamag@res.titech.ac.jp.

Supplementary Figures and Tables

Fig. S1 Measured (upper) and theoretical (lower; JCPDS: 03-065-2919) X-ray diffraction

(XRD) patterns of MnS.

Fig. S2 Measured (upper) and theoretical (lower; JCPDS: 04-003-1962) XRD patterns of

CoS₂.

Fig. S3 Measured (upper) and theoretical (middle; JCPDS: 01-089-1957) XRD patterns

of α -NiS. The sample contains 3.1% of β -NiS (lower; ICSD: 29312).

Fig. S4 Measured (upper) and theoretical (lower; JCPDS: 04-008-8460) XRD patterns of

CuS.

Fig. S5 Measured (upper) and theoretical (lower; JCPDS: 04-024-2239) XRD patterns of

Cu₂S.

Fig. S6 Measured (upper) and theoretical (lower; JCPDS: 00-037-1492) XRD patterns of

MoS₂.

Fig. S7 Measured (upper) and theoretical (lower; JCPDS: 01-074-5022) XRD patterns of

ZnS.

Fig. S8 Measured (upper) and theoretical (lower; JCPDS: 01-073-1704) XRD patterns of

NiCo₂S₄.

Fig. S9 Measured (upper) and theoretical (lower; JCPDS: 01-073-1297) XRD patterns of

CoNi₂S₄.

Fig. S10 OER polarization curves of the metal sulfides in 1 M KOH based on the mass

activity.

Fig. S11 OER polarization curves of CoS₂/Au electrode after repeated potential cycles.

Fig. S12 Raman spectra of pristine CoS2 and recovered samples from CoS2/Au

electrode after 10 and 1000 cycles.

Fig. S13 TEM images of the (a1) pristine CoS₂, (b1) its recovered sample after 1000

repeated potential cycles and their zoomed images (a2 and b2).

Fig. S14 DFT-calculated PDOS of the sulfur p band for the metal sulfides. (a) MnS, (b)

CoS₂, (c) NiS, (d) CuS, (e) Cu₂S, (f) MoS₂, (g) ZnS, (h) NiCo₂S₄ and (i) CoNi₂S₄.

Fig. S15 OER specific activity at 1.60 V for the metal sulfides as a function of the unoccupied (a) metal *d*- and (b) sulfur *p*-band centers for each metal sulfide, extracted from the DFT-obtained PDOS presented in Fig. 6 and S14, respectively.

Fig. S16 XPS spectrum of MnS.

Fig. S17 XPS spectrum of CoS₂.

Fig. S18 XPS spectrum of NiS.

Fig. S19 XPS spectrum of CuS.

Fig. S20 XPS spectrum of Cu₂S.

Fig. S21 XPS spectrum of MoS₂.

Fig. S22 XPS spectrum of ZnS.

Fig. S23 XPS spectrum of NiCo₂S₄.

Fig. S24 XPS spectrum of CoNi₂S₄.

Fig. S25 S/M atomic ratios of each metal sulfides obtained by XPS measurements as a

function of the number of d electrons in each metal component.

Fig. S26 DFT-calculated PDOS of the Ni d band and S p band for the metal sulfides. (a

and b) α -NiS, (c and d) β -NiS.

Fig. S27 The calculated data of β -NiS (yellow triangles), added to Fig. 7.

Fig. S28 The calculated data of β -NiS (yellow triangles), added to Fig. 8.

Catalyst	Lattic	e vector lengtl	n ^a [Å]	k -point	U
MnS	5.221	5.221	5.221	8×8×8	N/A
CoS_2	5.528	5.528	5.528	7×7×7	3.3
NiS	3.440	3.440	5.348	12×12×8	3.6
β-NiS	5.640	5.640	5.640	8×8×8	3.6
CuS	3.794	3.794	16.341	11×11×3	4.0
Cu ₂ S	15.246	11.884	13.494	3×3×3	4.0
MoS_2	3.161	3.161	12.299	13×13×3	2.9
ZnS	3.793	3.793	43.811	11×11×1	N/A
NiCo ₂ S ₄	9.382	9.382	9.382	4×4×4	Ni:3.6, Co:3.3
CoNi ₂ S ₄	9.382	9.382	9.382	4×4×4	Ni:3.6, Co:3.3

Table S1 Calculated unit cell sizes of the nine metal sulfides, the number of k-points and

U.

^aInitial structures obtained experimentally and collected as CIF formats from the JCPDS cards.

 Catalyst -	Raman shift [cm ⁻¹]			
	Expt. in this study	Reported	Ket.	
MnS	320, 376, 660	319, 367, 657	1	-
CoS ₂	288, 315, 392	292, 323, 393	2	-
NiS	239, 283, 333, 387, 473	140, 240, 300, 350, 380, 480 ^a	3	-
CuS	263, 475	261, 472	4	-
Cu ₂ S	270, 471	265, 474	5	
MoS ₂	286, 383, 408, 452	284, 384, 408, 473	6	_
ZnS	153, 263, 347, 394, 417, 442, 613, 642	147, 176, 217, 262, 277, 348, 394, 422, 448, 522, 611, 638,	7	-
NiCo2S4	154, 249, 310, 356, 386	150, 239, 301, 342, 373	8	-
CoNi ₂ S ₄	236, 308, 356, 388	230, 299, 351, 386	9	

Table S2 Peaks observed in the Raman spectra of the metal sulfides in Fig. 2 compared

with literature values.

^aRoughly estimated from the spectrum in the literature.

Catalyst	Theoretical composition [wt%]	Measured composition ^a [wt%]
NiCo2S4	Ni 14.3, Co 28.6, S 57.1	Ni 17.5, Co 25.5, S 57.0
CoNi2S4	Ni 28.6, Co 14.3, S 57.1	Ni 26.2, Co 19.2, S 54.6

Table S3 Elemental compositions of NiCo₂S₄ and CoNi₂S₄.

^aQuantified by inductively coupled plasma-atomic emission spectroscopy.

_	Catalyst	Unocc. <i>p</i> -band center of sulfur [eV]
	MnS	1.32
	CoS ₂	0.267
	NiS	1.31
	β-NiS	0.866
	CuS	4.23
	Cu ₂ S	5.35
	MoS ₂	2.90
	ZnS	5.47
	NiCo ₂ S ₄	1.19
_	CoNi ₂ S ₄	0.153

Table S4 Unoccupied sulfur *p*-band centers in the metal sulfides determined from DFT

calculations.

Catalyst	Measured composition ^a [atom%]	Sulfur/Metal ratio [–]
MnS	Mn 94, S 6	0.059
CoS_2	Co 58, S 41	0.71
NiS	Ni 83, S 17	0.21
CuS	Cu 93, S 7	0.078
Cu ₂ S	Cu 92, S 8	0.087
MoS ₂	Mo 36, S 64	0.33
ZnS	Zn 75, S 25	1.8
NiCo ₂ S ₄	Ni 27, Co 44, S 27	0.38
CoNi2S4	Ni 27, Co 38, S 34	0.52

Table S5 Elemental compositions of the metal sulfides.

^aQuantified by XPS.

References

- M. Girish, T. Dhandayuthapani, R. Sivakumar, C. Sanjeeviraja and M. Kumaresavanji, J. Mater. Sci.-Mater. Electron., 2017, 28, 6741–6753.
- D. Ma, B. Hu, W. D. Wu, X. Liu, J. T. Zai, C. Shu, T. T. Tsega, L. W. Chen, X. F.
 Qian and T. L. Liu, *Nat. Commun.*, 2019, 10, 3367.
- J. R. Xavier, S. P. Vinodhini and S. S. Chandraraj, J. Clust. Sci., 2023, 34, 1805– 1817.
- T. A. Estrada-Mendoza, T. F. Burgess, D. S. Edirisinghe, A. G. Gonzalez, J. N. Khalaf, J. Brentley Fravel, C. D. McMillen and G. Chumanov, *Chem. Method.*, 2022, 2, e202100077.
- R. A. Ismail, A. M. E. Al-Samarai and A. M. Muhammed, J. Mater. Sci.-Mater. Electron., 2019, 30, 11807–11818.
- A. Taghizadeh, U. Leffers, T. G. Pedersen and K. S. Thygesen, *Nat. Commun.*, 2020, 11, 3011.
- A. Fairbrother, V. Izquierdo-Roca, X. Fontané, M. Ibáñez, A. Cabot, E. Saucedo and A. Pérez-Rodríguez, *CrystEngComm*, 2014, 16, 4120–4125.
- C. Xia, P. Li, A. N. Gandi, U. Schwingenschlögl and H. N. Alshareef, *Chem. Mater.*, 2015, 27, 6482–6485.

9. C. E. Beckett-Brown, A. M. McDonald and W. Zhe, Can. Mineral., 2018, 56, 705–

722.