Supporting information

The selective oxidation of methanol to formaldehyde using novel iron molybdate catalysts prepared by supercritical antisolvent precipitation

Jack R. Pitchers,^{a*} James Carter,^a Aziz Genç,^a Thomas J.A. Slater,^a David J. Morgan,^a Alice Oakley,^b Bart D. Vandegehuchte,^c Stuart H. Taylor,^a Graham J. Hutchings^{a*}

 a. J. R. Pitchers, J. Carter, A. Genç, T.J.A. Slater, D. Morgan, S. Taylor, G. Hutchings Cardiff Catalysis Institute, School of Chemistry Cardiff University Translational Research Hub, Maindy Road Cardiff, UK

E-mail: pitchersjr@cardiff.ac.uk; hutch@cardiff.ac.uk Address here.

- b. A. Oakley School of Chemistry Southampton University Highfield Campus, Southampton, Hampshire, UK
 c. B. D. Vandegehuchte
- c. B. D. Vandegehuchte TotalEnergies OneTech Belgium Zone Industrielle C, 7181 Feluy, Belgium

Fig S1. a) Schematic of Sci-Med custom apparatus for supercritical antisolvent precipitation with flow indications for CO_2 (green), coolant (blue), metal precursor solution (red) and ventilation (yellow). **b)** Coaxial nozzle design, highlighting the feed of CO_2 and metal precursor solution into the precipitation vessel.

Fig S2. XRD diffractogram of a FeMo SAS precipitate, showing no well-defined crystalline structure.

Fig S3. SEM images of FeMo_140P-10C-20W-7.5F.

Fig S4. SEM images of FeMo_110P-5C-20W-5F.

Fig S5. SEM images of FeMo_140P-10C-10.5W-5F.

Fig S6. SEM images of FeMo_80P-7.5C-20W-5F.

Fig S7. SEM images of FeMo_80P-10C-1W-5F

Fig S8. SEM images of FeMo_140P-5C-20W-10F.

Fig S9. SEM images of FeMo_110P-7.5C-10.5W-7.5F.

Fig S10. Particle size distribution of catalyst precursors.

Fig S11. Thermogravimetric analysis of all catalyst samples formed by SAS precipitation.

Fig S12. EDX Analysis of HAADF STEM images for FeMo_80P-10C-1W-5F.

Fig S13. EDX Analysis of HAADF STEM images for FeMo_110P-5C-20W-7.5F.

Fig S14. High resolution HAADF-STEM images of FeMo_80P-10C-1W-5F showing the effects of the electron beam on the amorphization of the structure. Electron dose is ~6600 e^{-}/A^2 for each image.

Fig S15. Mo 3d XPS spectra of novel iron molybdate catalysts formed.

Fig S16. Comparison of precursor (left) and catalyst (right) morphology for FeMo_140P-10C-20W-7.5F.

Fig S17. Comparison of precursor (left) and catalyst (right) morphology for FeMo_110P-5C-20W-5F.

Fig S18. Comparison of precursor (left) and catalyst (right) morphology for FeMo_140P-10C-10.5W-5F.

Fig S19. Comparison of precursor (left) and catalyst (right) morphology for FeMo_80P-7.5C-20W-5F.

Fig S20. Comparison of precursor (left) and catalyst (right) morphology for FeMo_80P-10C-1W-5F

Fig S21. Comparison of precursor (left) and catalyst (right) morphology for FeMo_140P-5C-20W-10F.

Fig S22. Comparison of precursor (left) and catalyst (right) morphology for FeMo_110P-7.5C-10.5W-7.5F.

Fig S23. Relationship between uncalcined and calcined specific surface area.

Fig S24. Repeat catalyst testing of FeMo_140P-5C-20W-10F for the selective methanol oxidation to formaldehyde. Isoconversion studies were conducted at 250 °C. The MeOH: $O_2:N_2$ ratio was 5:10:85 for all testing, with a total flow rate of 30 mL min⁻¹.

low flow rate, high water content		
droplets $t = t_1$ $t = t_2 > t_1$		
Larger initial droplets lower miscibility = expansion of droplet before precipitation = larger particle size		
High flow rate, high water content		
$\underbrace{}_{t=t_1} _{t=t_2>t_1} _{t=t_2>t_1} _{t=t_2>t_1}$		
droplets droplets precipitate		
Smaller initial droplets lower miscibility = expansion of droplet before precipitation = larger particle size		

Fig S25: proposed relationships between particle size, solution flow rate and water content for SAS preparation.

Table S1. Comparison of productivity of catalysts formed in comparison to catalysts in literature.

Catalyst	Fe:Mo (1:x)	Temperature	WHSV	Productivity	Reference
		°C	9 _{МеОН} 9 _{саt} -1 hr-1	mmol _{CH2} 0 g _{cat} -1 hr ⁻¹	
FeMo_140P-10C-20W- 7.5F	1.58	250	7.4	25.4	This work
FeMo_110P-5C-20W-5F	1.37	250	10.7	42.5	This work
FeMo_140P-10C- 10.5W-5F	1.66	250	7.9	33.7	This work
FeMo_80P-7.5C-20W- 5F	1.55	250	8.4	26.6	This work
FeMo_80P-10C-1W-5F	1.61	250	6.7	25.6	This work
FeMo_140P-5C-20W- 10F	1.50	250	9.8	33.3	This work
FeMo_110P-7.5C- 10.5W-7.5F	1.60	250	9.4	36.6	This work
FeMoO _x catalysts formed from metal oxalate precursor	1.5	260	0.785	18.6	1
Fe ₂ (MoO ₄) ₃ /MoO ₃ nanorods	1.6	260	0.785	12.8	2
FeMoO _x catalysts formed from metal malonate precursor	1.5	260	0.785	6.35	3
Co-FeMoO _x (Co:Mo = 0.05:1)	2.6	285	0.785	22.9	4
5 wt% MoO ₃ -CaHAP – MoO ₃ supported on Ca doped hydroxyapatite		250	23.56	18.4	5
10 wt% MoO ₃ -CaHAP – MoO ₃ supported on Ca doped hydroxyapatite		250	23.56	26.0	5

References

- 1 B. R. Yeo, G. J. F. Pudge, K. G. Bugler, A. V Rushby, S. Kondrat, J. Bartley, S. Golunski, S. H. Taylor, E. Gibson, P. P. Wells, C. Brookes, M. Bowker and G. J. Hutchings, *Surf Sci*, 2016, **648**, 163–169.
- 2 G. Jin, W. Weng, Z. Lin, N. F. Dummer, S. H. Taylor, C. J. Kiely, J. K. Bartley and G. J. Hutchings, *J Catal*, 2012, **296**, 55–64.
- 3 G. J. F. Pudge, G. J. Hutchings, S. A. Kondrat, K. Morrison, E. F. Perkins, A. V. Rushby and J. K. Bartley, *Catal Sci Technol*, 2022, **12**, 4552–4560.
- 4 X. Liu, L. Kong, S. Xu, C. Liu and F. Ma, *Front Chem Sci Eng*, 2021, **15**, 1099–1110.
- 5 J. Thrane, C. Falholt Elvebakken, M. Juelsholt, T. Lindahl Christiansen, K. M. Ø. Jensen, L. Pilsgaard Hansen, L. Fahl Lundegaard, U. Vie Mentzel, M. Thorhauge, A. Degn Jensen and M. Høj, *ChemCatChem*, 2021, **13**, 4954–4975.