## Selective Oxidation of Sulfides Catalysed by WO<sub>3</sub> Supported on Chitosan-Derived Carbon

G. F. Yamakawa<sup>a</sup>, L.K. Ribeiro<sup>a,b,\*</sup>, R.Y. N. Reis<sup>a</sup>, L.H. Mascaro<sup>a</sup>, E. Longo<sup>a</sup>, M. Assis<sup>c,\*</sup>

<sup>a</sup> CDMF, LIEC, Federal University of São Carlos (UFSCar), São Carlos 13565-905, Brazil

<sup>b</sup> Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom

° Biosciences Department, Federal University of São Paulo (UNIFESP), Santos 11015-020, Brazil

\*Corresponding author: larakribeiro@gmail.com; marcelostassis@gmail.com

## SUPPLEMENTARY INFORMATION



Figure S1. A-B) SEM images of the WO<sub>3</sub>.

## Table S1. Comparison of catalytic conditions with other previous works.

| Catalyst                                         | Solvent                      | Temperature | Time | Substrate | Oxidizer                       | Yield | Duaduat   | Def  |
|--------------------------------------------------|------------------------------|-------------|------|-----------|--------------------------------|-------|-----------|------|
|                                                  |                              | (°C)        | (h)  | (mmol)    |                                | (%)   | rroduct   | ĸei. |
| TaC                                              | Methanol                     | 45°C        | 1.25 | 1         | $H_2O_2$                       | 97    | Sulfoxide | 60   |
| NbC                                              | Ehanol                       | 60°C        | 2.75 | 1         | $H_2O_2$                       | 98    | Sulfone   | 60   |
| <b>SBTIC</b> <sup>a</sup>                        | Dichloromethane/<br>Methanol | 25°C        | 1.5  | 2         | $H_2O_2$                       | 82    | Sulfoxide | 62   |
| $C_6F_{14}$                                      | Dichloromethane              | 25°C        | 48   | 1         | m-CPBA                         | 87    | Sulfone   | 63   |
| NiWO₄⁄<br>chitosan                               | Acetonitrile                 | 50°C        | 1    | 0,1       | $H_2O_2$                       | >99   | Sulfone   | 34   |
| Fe <sub>2</sub> (MoO) <sub>4</sub> /<br>chitosan | Acetonitrile                 | 50°C        | 0.5  | 0,1       | $H_2O_2$                       | 99    | Sulfone   | 33   |
| α-Ag₂WO₄:V                                       | Acetonitrile                 | 50°C        | 1    | 0,1       | $\mathrm{H}_{2}\mathrm{O}_{2}$ | >99   | Sulfone   | 28   |
| $\alpha$ -Ag <sub>2</sub> WO <sub>4</sub>        | Acetonitrile                 | 50°C        | 0.5  | 0,1       | $H_2O_2$                       | >99   | Sulfone   | 29   |
| WO <sub>3</sub> ·H <sub>2</sub> O                | Octane                       | 70°C        | 1    | -         | $H_2O_2$                       | >98   | Sulfone   | 65   |
| WO <sub>3</sub>                                  | Tetrahydrofuran              | 0°C         | 40   | 1         | $H_2O_2$                       | 90    | Sulfoxide | 66   |

<sup>a</sup>Silica-Based Tungstate Interphase Catalyst; <sup>b</sup> in the presence of cinchona alkaloids.



Figure S2. Scaling using A) acetonitrile and B) water as a solvent reaction.

Catalytic Substrate Scope. The detection of sulfides and their corresponding sulfones was performed under specific chromatographic conditions for each compound. For thioanisole/methyl phenyl sulfone (CAS 100-68-5, rt = 2.2 min; CAS 3112-85-4, rt = 3.9 min), 4-methoxythioanisole/4-methoxyphenyl methyl sulfone (CAS 3517-90-6, rt = 5.2 min; CAS 3517-90-6, rt = 5.0 min), 4-methyl p-tolyl sulfide/4-(methylsulfonyl)toluene (CAS 623-13-2, rt = 2.7 min; CAS 31855-99-7, rt = 4.5 min), 4-nitrothioanisole/1-(methylsulfonyl)-4-nitrobenzene (CAS 701-57-5, rt = 3.9 min; CAS 2976-30-9, rt = 4.8 min), diethyl sulfide/diethyl sulfone (CAS 352-93-2, rt = 1.7 min; CAS 597-35-3, rt = 2.1 min), 4-chlorothioanisole/4chlorophenyl methyl sulfone (CAS 123-09-1, rt = 3.1 min; CAS 98-57-7, rt = 4.6 min), 2,5dimethylthiophene/2,5-dimethylthiophene sulfone (CAS 638-02-8, rt = 1.2 min; CAS 50590-75-9, rt = 4.1 min), and dibenzothiophene/dibenzothiophene sulfone (CAS 132-65-0, rt = 5.3 min; CAS 1016-05-3, rt = 6.2 min), the oven temperature was initially set to 75°C for 2 minutes, followed by a ramp of 20°C/min to a final temperature of 325°C, held for 2 minutes. For thiophene/thiophene 1,1-dioxide (CAS 110-02-1, rt = 1.7 min; CAS 2976-30-9, rt = 1.5 min), the temperature ramp was adjusted to  $5^{\circ}$ C/min from  $75^{\circ}$ C to  $325^{\circ}$ C, with an initial hold of 2 minutes and a final hold of 2 minutes. Similarly, diphenyl sulfide/diphenyl sulfore (CAS 139-66-2, rt = 21.8 s; CAS 127-39-9, rt = 5.7 min) was analyzed with an initial oven temperature of 40°C, held for 2 minutes, and ramped at 5°C/min to 325°C, held for 2 minutes. The method parameters included an inlet temperature of 325°C, a 1 µL injection volume in split mode, and nitrogen as the carrier gas. Data acquisition and analysis were carried out using Agilent OpenLab 3.5 software.