Supporting Information

Construction of an Advanced MoS₂/MoO₃/NiFe-LDH/NF Heterostructure Catalyst toward Boosting Efficient Alkaline Oxygen Evolution Reaction

Hui-Zhan Wen, Yang Zhao, Hai-Tao Zhang, Zha-Xi Wan-Me, Xue-Ying Wan, Yu-Long Xie*

School of Chemistry and Materials Science, Qinghai Minzu University,

Key Laboratory of Resource Chemistry and Eco-environmental Protection in Tibetan Plateau

of State Ethnic Affairs Commission, Qinghai Provincial Key Laboratory of Nanomaterials

and Nanotechnology, Xining, 810007, China

*Corresponding author.

E-mail: yulongxie2012@126.com

1.Supplementary Figures

Figure S1 EDS test results of MoS₂/MoO₃/NiFe-LDH/NF.

Figure S2 High-resolution XPS full spectrum of MoS₂/MoO₃/NiFe-LDH/NF.

Figure S3 SEM images of MoS₂/MoO₃/NiFe-LDH/NF after durability test.

Figure S4 The comparison of OER performance for some representative non-noble. electrocatalysts.

Figure S5 Control experiments using different time and different volumes of H₂O₂.

Figure S6 CV curves of (a) NiFe-LDH/NF, (b) MoS₂/ NiFe-LDH/NF, (c) MoO₃/NiFe-LDH/NF and (d) MoS₂/MoO₃/NiFe-LDH/NF for the OER reaction at different scan rates.

Figure S7 The corresponding turnover frequency at an overpotential of 200 mV.

2. Supplementary Tables

Catalysts	J (mA cm ⁻²)	η mV (vs.RHE)	Tafel slope (mV dec ⁻¹)	Electrolyte	reference
MoS ₂ /MoO ₃ /NiFe-	50	255	19.4	1.0M KOH	This
LDH/NF	100	267			work
1T-MoS ₂ /Ni ₃ S ₂ /LDH	100	290	57.3	1.0M KOH	1
NiFe-LDH/MoS ₂	100	347	108	1.0M KOH	2
CoCrOx/NiFeLDH	100	205	28.9	1.0M KOH	3
FeNiMnO ₄ /CeO ₂	100	296	44.8	1.0M KOH	4
La-NMS@NF	100	300	152	1.0M KOH	5
NiSe ₂ /Ni ₃ Se ₄ /NF	100	309	71.9	1.0 M KOH	6
NiFeOxHy/NF-x	100	306	53	1.0 M KOH	7

Table S1 Comparison of electrocatalytic performance for OER to other reported catalysts in

1.0 M KOH.

3. Notes and references

- 1. W. Liu, J. Dong, B. An, H. Su, Z. Teng, N. Li, Y. Gao and L. Ge, *Journal of Colloid and Interface Science*, 2024, **673**, 228-238.
- S. Wang, X. Ning, Y. Cao, R. Chen, Z. Lu, J. Hu, J. Xie and A. Hao, *Inorganic Chemistry*, 2023, 62, 6428-6438.
- 3. L. Wan, D. Lin, J. Liu, Z. Xu, Q. Xu, Y. Zhen, M. Pang and B. Wang, ACS Nano, 2024, 18, 22901-22916.
- 4. H. Wu, Z. Wang, Y. Shi, Z. Li, F. Ding, Y. Ren, F. Li, H. Bian, C. Wang, Y. Yang, J. Gu, S. Tang, Y. Ma, Y. Deng and X. Meng, *Inorganic Chemistry Frontiers*, 2024, **11**, 3786-3798.
- 5. W. Li, Z. Sun, R. Ge, J. Li, Y. Li, J. M. Cairney, R. Zheng, Y. Li, S. Li, Q. Li and B. Liu, 2023, 4, 2300175.
- L. Tan, J. Yu, H. Wang, H. Gao, X. Liu, L. Wang, X. She and T. Zhan, *Applied Catalysis B: Environmental*, 2022, 303, 120915.
- J. Deng, Z. Wang, H. Yang, R. Jian, Y. Zhang, P. Xia, W. Liu, O. Fontaine, Y. Zhu, L. Li and S. Chen, Chemical Engineering Journal, 2024, 482, 148887.