Supplementary information

The electronic effect on the electrocatalytic hydrogen evolution reaction of silicon(IV) corrole complexes

Liang-Hong Liu, Feng Li, Xu-You Cao, Qing-Hua Yu, Zhen-Wu Liu, Hao Zhang, Fu-Rong Wang *, and Hai-Yang Liu *

School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Fuel Cell Technology, South China University of Technology, Guangzhou 510641, P.R. China

*Corresponding Author: chhyliu@scut.edu.cn

1. General informations

All reagents were purchased commercially and were used without further purification unless otherwise pointed out. ¹H and ¹⁹F NMR spectra were recorded on a Bruker Avance III 500 MHz NMR spectrometer. The NMR spectra were referenced to the CDCl₃ residual solvent signal (7.26 ppm). UV-vis spectra in CH_2Cl_2 were recorded using a Hitachi U-3010 spectrophotometer at room temperature. High-resolution mass spectra (HRMS) were obtained using the Bruker microQ-TOF-QII high resolution spectrometer in the electrospray ionization (ESI) mode using Bruker Daltonics coupled to a Water Acquinty system. X-ray photoelectron spectroscopy (XPS) was measured using an Axis Ultra DLD spectrophotometer, correcting the binding energies by comparing to C 1s peak (284.8 eV) by the adventitious hydrocarbon. Electrochemical measurements were performed with a CHI-660E electrochemical workstation at room temperature under saturated N_2 . The threeelectrode cell had glass carbon (GC) as the working electrode, graphite rod as the counter electrode, saturated Ag/AgNO3 as the reference electrode in DMF, and Ag/AgCl as the reference electrode in aqueous solutions. Ferrocene was added as an internal standard in DMF. Controlled potential electrolysis (CPE) test was performed in a single electrolytic cell filled with 20 mL of buffer solution (CH₃CN: H₂O 1:2) with 0.1 M KCl and 0.25 M KH₂PO₄.

2. Synthesis of corroles

5,10,15-tris (pentafluorophenyl) corrole ($F_{15}C$), 5,15-bis (pentafluorophenyl)-10-(phen-yl) corrole ($F_{10}C$), 5,15-bis (phenyl)-10-(pentafluoropheny) corrole (F_5C), 5,10,15tris (phe-nyl) corrole (F_0C) were prepared by previously published procedures.¹⁻³

5,10,15-tris (pentafluorophenyl) corrole (F₁₅C)

¹H NMR (500 MHz, Chloroform-*d*) δ 9.10 (d, J = 4.2 Hz, 2H), 8.78 (d, J = 4.6 Hz, 2H), 8.58 (dd, J = 21.0, 3.8 Hz, 4H). ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -137.45 (d, J = 257.0 Hz, 6F), -152.43 (d, J = 272.7 Hz, 3F), -161.62 (d, J = 219.8 Hz, 6F). HR-MS: m/z calculated for C₃₇H₁₂F₁₅N₄⁺: 797.0817 [M+H]⁺; found: 797.0824.

5,15-bis (pentafluorophenyl)-10-(phenyl) corrole (F₁₀C)

¹H NMR (500 MHz, Chloroform-*d*) δ 9.11 (d, J = 4.3 Hz, 2H), 8.71 (s, 4H), 8.57 (d, J = 4.3 Hz, 2H), 8.18 (d, J = 3.6 Hz, 2H), 7.80 – 7.74 (m, 3H). ¹⁹F NMR (471 MHz, Methylene Chloride-*d*₂) δ -139.77 (dd, J = 24.3, 8.5 Hz, 4F), -154.77 (d, J = 20.7 Hz, 2F), -163.45 – 164.07 (m, 4F). HR-MS: m/z calculated for C₃₇H₁₇F₁₀N₄⁺: 707.1288 [M+H]⁺; found: 707.1293.

5,15-bis (phenyl)-10-(pentafluoropheny) corrole (F₅C)

¹H NMR (500 MHz, Chloroform-*d*) δ 8.91 (d, *J* = 60.5 Hz, 4H), 8.57 – 8.28 (m, 8H), 7.83 (d, *J* = 27.3 Hz, 6H). ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -136.85 – -138.44 (m, 2F), -153.76 (d, *J* = 128.5 Hz, 1F), -162.30 (d, *J* = 129.3 Hz, 2F). HR-MS: m/z calculated for C₃₇H₂₂F₅N₄⁺: 617.1759 [M+H]⁺; found: 617.1763.

5,10,15-tris (phenyl) corrole (F₀C)

¹H NMR (500 MHz, Chloroform-*d*) δ 8.98 – 8.81 (m, 4H), 8.65 – 8.10 (m, 10H), 7.93 – 7.64 (m, 9H). HR-MS: m/z calculated for C₃₇H₂₇N₄⁺: 527.2230 [M+H]⁺; found: 527.2227.

5,10,15-tris (pentafluorophenyl) silicon (IV) corrole (F₁₅C-Si)

Fig. S1 Synthetic routes of Si corrole.

The synthesis method of silicon corrole complexes was thoroughly detailed in previous reports,⁴ and our research has made some modifications to it. Taking the synthesis of F₁₅C-Si as an example: Free base F₁₅C (199 mg, 0.25 mmol) was dissolved in 1,2-dichloroethane (38 mL) and DIPEA (N, N-diisopropylethylamine, 6.5 mL, 38 mmol). Tetrachlorosilane (1.4 mL, 12.5 mmol) was slowly added to the obtained solution. The reaction mixture was stirred at 60 °C for 40 hours. The reaction mixture was then washed with aqueous NaOH (1 M) and extracted with dichloromethane. The organic extract was neutralized with an aqueous solution of NH₄Cl and washed with saturated saline. The organic extract was dried with anhydrous Na₂SO₄ and after removing the solvent under reduced pressure, the crude product was purified by silica gel chromatography column by using a solvent system (V_{DCM} : V_{Hex} = 4:1) as eluent. After recrystallization obtain black solid (171.1 mg, yield 81.7%). ¹H NMR (500 MHz, Chloroform-*d*) δ 9.54 (d, *J* = 4.4 Hz, 2H), 9.11 (d, *J* = 4.9 Hz, 2H), 9.07 (d, *J* = 4.4 Hz, 2H), 8.93 (d, J = 4.8 Hz, 2H). ¹⁹F NMR (471 MHz, Chloroform-d) δ -136.30 – -136.53 (m, 3F), -137.08 - -137.26 (m, 3F), -151.74 - -152.01 (m, 3F), -161.01 - -161.46 (m, 6F). ²⁹Si NMR (119 MHz, CDCl₃) δ -149.4. HR-MS: m/z calculated for C₃₇H₉F₁₅N₄NaOSi⁺: 861.0198 [M+Na]⁺; found: 861.0204.

5,15-bis (pentafluorophenyl)-10-(phenyl) silicon (IV) corrole (F10C-Si)

The synthetic route was similar to $F_{15}C-Si$, after recrystallization obtain pure silicon corrole (black solid, yield 80.3%). ¹H NMR (500 MHz, Chloroform-*d*) δ 9.52 (d, *J* = 4.3 Hz, 2H), 9.03 (dt, *J* = 6.0, 4.6 Hz, 6H), 8.33 – 8.28 (m, 1H), 8.09 – 8.04 (m, 1H), 7.85 – 7.74 (m, 3H). ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -136.44 – -136.56 (m, 2F), -137.27 – 137.39 (m, 2F), -152.43 (t, *J* = 20.9 Hz, 2F), -161.36 – -161.65 (m, 4F). ²⁹Si NMR (119 MHz, CDCl₃) δ -149.2. HR-MS: m/z calculated for C₃₇H₁₅F₁₀N₄OSi⁺: 749.0850 [M+H]⁺; found: 749.0857.

5,15-bis (phenyl)-10-(pentafluoropheny) silicon (IV) corrole (F₅C-Si)

The synthetic route was similar to $F_{15}C$ -Si, after recrystallization obtain pure silicon corrole (black solid, yield 77.6%). ¹H NMR (500 MHz, Chloroform-*d*) δ 9.28 (d, J = 3.4 Hz, 2H), 9.16 (d, J = 3.9 Hz, 2H), 8.99 (d, J = 3.4 Hz, 2H), 8.65 (d, J = 3.9 Hz, 2H), 8.30 – 8.05 (m, 4H), 7.70 (t, J = 7.2 Hz, 6H). ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -136.68 (dd, J= 24.4, 8.5 Hz, 1F), -137.51 (dd, J = 24.1, 8.6 Hz, 1F), -153.02 (t, 1F), -161.83 (dtd, J = 88.1, 22.6, 21.7, 8.4 Hz, 2F). ²⁹Si NMR (119 MHz, CDCl₃) δ -148.7. HR-MS: m/z calculated for C₃₇H₂₀F₅N₄OSi⁺: 659.1321 [M+H]⁺; found: 659.1321.

5,10,15-tris (phenyl) silicon (IV) corrole (F₀C-Si)

The synthetic route was similar to **F**₁₅**C**-**Si**, after recrystallization obtain pure silicon corrole (black solid, yield 71.5%). ¹H NMR (500 MHz, Chloroform-*d*) δ 9.37 (d, *J* = 4.3 Hz, 2H), 9.21 (d, *J* = 4.8 Hz, 2H), 9.08 (d, *J* = 4.2 Hz, 2H), 8.91 (d, *J* = 4.8 Hz, 2H), 8.41 – 8.17 (m, 4H), 8.05 (d, *J* = 6.9 Hz, 1H), 7.86 – 7.70 (m, 10H). ²⁹Si NMR (119 MHz, CDCl₃) δ -148.7. HR-MS: m/z calculated for C₃₇H₂₄N₄NaOSi⁺: 591.1612 [M+Na]⁺; found: 591.1616.

Fig. S2 ¹H NMR spectrum of F₁₅C.

Fig. S3 ¹⁹F NMR spectrum of F₁₅C.

Fig. S4 ESI-HRMS spectrum of F₁₅C.

Fig. S5 ¹H NMR spectrum of F₁₀C.

Fig. S6 ¹⁹F NMR spectrum of F₁₀C.

Fig. S7 ESI-HRMS spectrum of F₁₀C.

Fig. S9 ¹⁹F NMR spectrum of F₅C.

Fig. S10 ESI-HRMS spectrum of F₅C.

Fig. S11 ¹H NMR spectrum of F₀C.

Fig. S12 ESI-HRMS spectrum of F₀C.

Fig. S14 ¹⁹F NMR spectrum of F₁₅C-Si.

00 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -3 f1 (ppm)

Fig. S15 ²⁹Si NMR spectrum of F₁₅C-Si.

Fig. S16 ESI-HRMS spectrum of F₁₅C-Si.

9,524 9,516 9,041 9,038 9,038 9,038 8,318,

Fig. S18 ¹⁹F NMR spectrum of F₁₀C-Si.

00 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -3 f1 (ppm)

Fig. S19 ²⁹Si NMR spectrum of F₁₀C-Si.

Fig. S20 ESI-HRMS spectrum of F₁₀C-Si.

Fig. S22 ¹⁹F NMR spectrum of F₅C-Si.

00 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -3 f1 (ppm)

Fig. S23 ²⁹Si NMR spectrum of F₅C-Si.

Fig. S24 ESI-HRMS spectrum of F₅C-Si.

Fig. S26 ²⁹Si NMR spectrum of F₀C-Si.

Fig. S27 ESI-HRMS spectrum of F₀C-Si.

Fig. S28 UV-vis spectra of F₁₅C and F₁₅C-Si (a), F₁₀C and F₁₀C-Si (b), F₅C and F₅C-Si (c), F₀C and F₀C-Si (d) in CH₂Cl₂ solvent at room temperature.

Fig. S29 XPS survey scan spectra of F₁₅C-Si, F₁₀C-Si, F₅C-Si and F₀C-Si and high-resolution XPS of characteristic element, a) full spectrum b) Si 2p c) N 1s d) F 1s.

Fig. S30 (a) The redox couple of ferrocene in DMF containing 0.10 M TBAP with blank glassy carbon as the working electrode; (b) CVs of F₁₅C-Si in the range of -2.6 - 0 V and -1.8 - 0 V in N₂-saturated DMF containing 0.10 M TBAP.

Fig. S31 CVs of 0.5 mM (a) $F_{15}C$ -Si, (b) $F_{10}C$ -Si, (c) F_5C -Si and (d) F_0C -Si with a varying scan rate (v) from 50 mV/s to 350 mV/s using the glassy carbon as the working electrode and plots of the maximum current (i_p) for the reduction and oxidation waves vs. the scan rate ($v^{1/2}$) (e-h).

Fig. S32 CVs of 0.5 mM silicon corrole complexes (F₁₅C-Si to F₀C-Si) (a-d) with increasing amounts of AcOH from 0 to 32 equivalents in N₂-saturated DMF containing 0.1 M TBAP.

Fig. S33 CVs of bare glassy carbon electrode and 0.5 mM F₀C-Si in DMF containing 0.1 M TBAP with 32 equivalents TFA.

Fig. S34 Charge of 0.5 mM F₁₅C-Si, F₁₀C-Si, F₅C-Si and F₀C-Si after 1 h of electrolysis in DMF containing 0.1 M TBAP with 32 equivalents TFA.

Fig. S35 The variation of C.E. for F₁₅C-Si, F₁₀C-Si, F₅C-Si and F₀C-Si under different concentrations of proton sources: a) TFA; b) TsOH.

Fig. S36 UV-vis spectra of 0.5 mM F₁₅C-Si, F₁₀C-Si, F₅C-Si and F₀C-Si in DMF containing 0.1 M TBAP with 32 equivalents TFA and after 1 h electrolysis.

Fig. S37 The impedance plots of 0.5 mM F₁₅C-Si, F₁₀C-Si, F₅C-Si and F₀C-Si after one hour of electrolysis in DMF containing 0.1 M TBAP with the addition of 32 equivalents of TFA.

Fig. S38 CVs of various concentrations of F_{15} C-Si, F_{10} C-Si, F_5 C-Si and F_0 C-Si (0.0 μ M-5.0 μ M) in buffer solutions at pH=7.0 ($V_{MeCN}/V_{H2O} = 2/3$).

Fig. S39 Charge accumulation of electrolyzing 5 μM F₁₅C-Si, F₁₀C-Si, F₅C-Si and F₀C-Si at a range of overpotentials in buffer solutions at pH=7.0 for 2 minutes (a-d).

Fig. S40 TOF values of 5 μM F₁₅C-Si, F₁₀C-Si, F₅C-Si and F₀C-Si at different overpotentials in buffer solutions at pH=7.0.

Fig. S41 The hydrogen calibration plot from GC measurements.

Fig. S42 Current versus 5 μ M F₁₅C-Si, F₁₀C-Si, F₅C-Si and F₀C-Si in buffer solution at pH = 7.0 at -2.2 V for 8 h electrolysis.

Fig. S43 Voltage variation versus 5 μ M F₁₅C-Si, F₁₀C-Si, F₅C-Si, and F₀C-Si in buffer solution at pH = 7.0 under constant current electrolysis at 400 μ A for 8 h.

Fig. S44 SEM images and EDX data of GC electrodes before (a-c) and after (d-f) electrolysis.

containing 16 mM 1FA							
complex	i_{cat}/i_{p}	Overpotential, mV	TOFmax, s ⁻¹	C.E			
F ₁₅ C-Si	12.38	973	173.19	0.39			
F ₁₀ C-Si	11.77	1004	125.56	0.37			
F5C-Si	9.50	1047	97.62	0.30			
F ₀ C-Si	7.07	1061	85.41	0.22			

Table S1Performance parameters of four corroles $F_{15}C$ -Si, $F_{10}C$ -Si, F_5C -Si and F_0C -Si in DMFcontaining 16 mM TFA

Table S2Performance parameters of four corroles F15C-Si, F10C-Si, F5C-Si and F0C-Si in DMFcontaining 16 mM TsOH

complex	i_{cat}/i_p	Overpotential, mV	TOFmax, s ⁻¹	C.E
F ₁₅ C-Si	31.08	1135	752.65	0.97
F ₁₀ C-Si	25.43	1141	614.02	0.79
F5C-Si	21.14	1199	531.67	0.66
F ₀ C-Si	20.55	1216	397.28	0.64

		•		
complex	TOF(h ⁻¹)	Overpotential, mV	Solution	Reference
F ₁₅ C-Si	550.26	1238	Buffer	This work
F ₁₀ C-Si	538.86	1238	Buffer	This work
F ₅ C-Si	392.95	1238	Buffer	This work
F ₀ C-Si	327.56	1238	Buffer	This work
BPTC-Co	567	1088	Buffer	5
PFIC-Co	405	1038	Buffer	6
Fe(TPFC)Cl	274	838	Water	7
BPXSC-Co	517	1138	Buffer	8
BPXHC-Co	526	1138	Buffer	8
Cu(HL)Cl	482	837	Buffer	9
СоОНС	1447.4	988	Buffer	10
Co-BPNC-PPh ₃	450	838	Buffer	11
(ClO ₄) ₂	230	900	Buffer	12

 Table S3
 The turnover frequency (TOF) of silicon corroles and transition metal complexes in aqueous phase.

References:

- (1) S. Mondal, A. Garai, P. K. Naik, J. K. Adha and S. Kar, Inorg Chim Acta, 2020, 501, 119300.
- (2) L. Huang, A. Ali, H. Wang, F. Cheng and H. Liu, Journal of Molecular Catalysis A: Chemical, 2017, 426, 213-222.
- (3) I. Luobeznova, M. Raizman, I. Goldberg and Z. Gross, Inorg Chem, 2006, 45, 386-394.
- (4) K. Ueta, M. Fukuda, G. Kim, S. Shimizu, T. Tanaka, D. Kim, A. Osuka, Chem. -A Eur. J. 2018, 24(30), 7637-7646.
- (5) J.-X. Hao, Z.-W. Liu, S.-Y. Xu, L.-P. Si, L.-M. Wang, H.-Y. Liu, Inorganica Chimica Acta. (2024), 564, 121967.
- (6) L.-W. Wu, Y.-F. Yao, S.-Y. Xu, X.-Y. Cao, Y.-W. Ren, L.-P. Si , H.-Y. Liu, Catalysts. (2024), 14(1): 5.
- (7) Y.-Q. Zhong, M. S. Hossain, Y. Chen, Q.-H. Fan, S.-Z. Zhan , H.-Y. Liu, Transition Metal Chemistry. (2019), 44, 399-406.
- (8) X.-Y. Cao, S.-Y. Xu, L.-W. Wu, Y.-F. Qiu, H. Zhang, L.-P. Si, L.-M. Wang, H.-Y. Liu, *Catalysis Science & Technology*. (2024), 14, 5608-5615.
- (9) R.-Z. Liao, M. Wang, L. Sun, P. E. M. Siegbahn, Dalton Transactions. (2015), 44, 9736-9739.
- (10) Z.-Y. Lv, G. Yang, B.-P. Ren, Z.-Y. Liu, H. Zhang, L.-P. Si, H.-Y. Liu, C.-K. Chang, European Journal of Inorganic Chemistry. (2023), 26, e202200755.
- (11) H. Chen, D.-L. Huang, M. S. Hossain, G.-T. Luo, H.-Y. Liu, Journal of Coordination Chemistry. (2019), 72, 2791-2803.
- (12) L. van Dijk, M. J. Tilby, R. Szpera, O. A. Smith, H. A. P. Bunce, S. P. Fletcher, Nature Reviews Chemistry. (2018), 2, 0117.