Supporting Information

Enhancement of CO₂ Hydrogenation to Methanol over Cu-Based Catalyst

Mixed with Hydrophobic Additives

Lei Huang^{1#}, Lingrui Cui^{1,2#}, Cao Liu¹, Xingguo Wei¹, Yechunzi Liu¹, Fahai Cao^{1,2*}

¹ School of Chemical Engineering, East China University of Science and Technology, Shanghai,

200237, China.

² Large Industrial Reactor Engineering Research Center of Ministry of Education, East China

University of Science and Technology, Shanghai, 200237, China.

[#] These authors contributed equally to this work and should be considered co-first authors.

*To whom correspondence should be addressed. E-mail: <u>fhcao@ecust.edu.cn</u> (Fahai Cao).

		Sele	ectivity (%)	Productivity	
Catalyst	$\operatorname{CO}_2\operatorname{Conv.}(\%)$ –	MeOH	CH_4	СО	$({}^{mg_{MeOH}/g_{cat/h}})$
Cu/Zn/Zr-PDVB-0.5	19.35	38.49	0	61.51	162.4
Cu/Zn/Zr-PDVB-0.75	22.66	48.76	0	51.24	203.7
Cu/Zn/Zr-PDVB-1	23.45	50.23	0	49.77	245.4
Cu/Zn/Zr-PDVB-1.25	22.82	49.23	0	50.77	225.2
Cu/Zn/Zr-PDVB-1.5	20.22	41.82	0	58.18	172.6

Table S1. The CO₂ hydrogenation performance of the Cu/Zn/Zr-PDVB catalyst for methanol synthesis.

Reaction conditions: 260°C, 5 MPa, gas hourly space velocity (GHSV) of 6000 mL/ g_{cat} /h, with a feed gas composition of H₂/CO₂/N₂ molar ratio of 67.5/22.5/10. Cu/Zn/Zr-PDVB-1 represents a PDVB/catalyst mass ratio of 1.

	T (00)		Selectivity (%)		Productivity	
Catalyst	Temperature (°C)	$\operatorname{CO}_2\operatorname{Conv.}(\%)$	MeOH	CH_4	СО	$({}^{mg_{MeOH/}g_{cat/h})}$
Cu/Zn/Zr	240	17.08	51.07	0	48.93	184.8
Cu/Zn/Zr	250	19.37	50.45	0	49.55	198.6
Cu/Zn/Zr	260	20.07	50.22	0	49.78	203.4
Cu/Zn/Zr	270	21.62	43.25	0	56.75	193.8
Cu/Zn/Zr	280	22.74	33.51	0	66.49	165.1
Cu/Zn/Zr-PDVB	240	18.65	51.48	0	48.52	196.5
Cu/Zn/Zr-PDVB	250	22.14	50.84	0	49.16	229.2
Cu/Zn/Zr-PDVB	260	23.45	50.23	0	49.77	245.4
Cu/Zn/Zr-PDVB	270	23.96	45.63	0	54.37	213.9
Cu/Zn/Zr-PDVB	280	24.13	38.43	0	61.57	193.7

Table S2. CO₂ hydrogenation performance for methanol synthesis over Cu/Zn/Zr and Cu/Zn/Zr-PDVB catalysts at different temperatures.

Reaction conditions: 5 MPa, GHSV of 6000 mL/ g_{cat}/h , with a feed gas composition of H₂/CO₂/N₂

molar ratio of 67.5/22.5/10. Cu/Zn/Zr-PDVB refers to the mixed catalyst with a PDVB/catalyst mass ratio of 1.

			1			
0.41.4		CO. Com. (9/)	Sel	ectivity (%)	Productivity	
Catalyst	PD v B mesh	$\cos (76) = \cos (76)$	MeOH	CH_4	СО	$({}^{mg_{MeOH}g_{cat/h}})$
Cu/Zn/Zr-PDVB	40-60	21.61	46.20	0	53.80	202.3
Cu/Zn/Zr-PDVB	60-100	22.05	47.01	0	52.99	209.8
Cu/Zn/Zr-PDVB	100-200	23.45	50.23	0	49.77	245.4
Cu/Zn/Zr-PDVB	200-300	21.17	44.14	0	55.86	190.1

 Table S3. CO2 hydrogenation performance for methanol synthesis over Cu/Zn/Zr catalysts mixed

 with PDVB of different particle sizes.

Reaction conditions: 260°C, 5 MPa, GHSV of 6000 mL/ g_{cat} /h, with a feed gas composition of H₂/CO₂/N₂ molar ratio of 67.5/22.5/10. Cu/Zn/Zr-PDVB refers to the mixed catalyst with a PDVB/catalyst mass ratio of 1.

Table S4. CO₂ hydrogenation performance for methanol synthesis over Cu/Zn/Zr catalysts with different particle sizes.

Catalant	Catalant mash	CO. Com. (9/)	Selectivity (%)			Productivity
Catalyst Cata	Catalyst mesn	$\mathrm{CO}_2\mathrm{Conv.}(\%)$	MeOH	CH_4	СО	$({}^{mg_{MeOH}\!/g_{cat/h}})$
Cu/Zn/Zr	40-60	19.89	50.23	0	49.77	201.8
Cu/Zn/Zr	60-80	20.07	50.22	0	49.78	203.4
Cu/Zn/Zr	80-100	20.37	50.17	0	49.83	206.1
Cu/Zn/Zr	100-200	20.51	50.08	0	49.92	208.5

Reaction conditions: 260°C, 5 MPa, GHSV of 6000 mL/ g_{cat} /h, with a feed gas composition of H₂/CO₂/N₂ molar ratio of 67.5/22.5/10.

Catalant	Minud	CO. Carry (0/)	Selectivity (%)			Productivity
Cataryst Mixed manner		$CO_2 CONV. (%)$	MeOH	CH_4	СО	$({}^{mg_{MeOH}\!/g_{cat/h}})$
Cu/Zn/Zr	Unmixed	20.07	50.22	0	49.78	203.1
Cu/Zn/Zr	Quartz sand mixing	20.02	50.21	0	49.79	202.9
Cu/Zn/Zr-PDVB	Dual layers mixing	20.10	50.24	0	49.76	203.6
Cu/Zn/Zr-PDVB	Powder mixing	23.45	50.23	0	49.77	245.4

Table S5. CO_2 hydrogenation performance for methanol synthesis over Cu/Zn/Zr catalysts with different mixing manners of PDVB.

Reaction conditions: 260°C, 5 MPa, GHSV of 6000 mL/ g_{cat} /h, with a feed gas composition of H₂/CO₂/N₂ molar ratio of 67.5/22.5/10.

Table S6. CO₂ hydrogenation performance for methanol synthesis on pure Cu catalysts mixed with different wetting materials.

Catalyst C	CO. Conv. (%)	Sele	ectivity (%)	Productivity	
	$CO_2 COIIV. (70)$	MeOH	CH_4	СО	$({}^{mg_{MeOH}/g_{cat/h}})$
Cu	4.77	54.25	0.32	45.44	21.4
Cu-PDVB	8.36	54.18	0.17	45.65	39.5
Cu-PTFE	5.46	52.79	0.39	46.81	27.8
Cu-PA	3.25	56.42	0.84	42.74	16.7
Cu-TiO2	2.55	59.47	1.32	39.21	14.9
Cu-SiO2	2.00	57.44	1.15	41.41	12.9

Reaction conditions: 240°C, 5 MPa, GHSV of 6000 mL/ g_{cat}/h , with a feed gas composition of H₂/CO₂/N₂ molar ratio of 67.5/22.5/10.

Gas Composition	Feed Gas (mol%)	Effluent Gas(mol%)
CO ₂	67.5	59.96
H_2	22.5	17.40
N_2	10	10.65
СО	-	3.11
MeOH	-	3.14
H ₂ O	-	5.74

Table S7. Outlet gas composition after reaction of Cu/Zn/Zr-PDVB catalyst.

Reaction conditions: 260°C, 5 MPa, GHSV of 6000 mL/ g_{cat} /h, with a feed gas composition of H₂/CO₂/N₂ molar ratio of 67.5/22.5/10.

Table S8. Distribution of Cu element valence states on different catalyst surfaces.

Catalyst types	Cu ⁰ Peak(%)	$Cu^{\delta+}$ Peak (%)	Cu ²⁺ Peak (%)
Pre-reduced Cu/Zn/Zr	54.35	23.24	21.20
Used Cu/Zn/Zr-PDVB	54.45	21.09	24.46
Used Cu/Zn/Zr	46.30	18.98	34.72

Figure S1. The water contact angle of Cu-PDVB catalyst.

Figure S2. Catalytic performance of Cu-SiO₂ Catalyst with different wettability. Reaction Conditions: 240°C, 5 MPa, GHSV = 6000 mL/g_{cat}/h, and a molar ratio of H₂/CO₂/N₂ of 67.5/22.5/10.

Figure S3. Catalytic performance of stearic acid modified Cu/Zn/Zr Catalyst. Reaction Conditions: 260°C, 5 MPa, GHSV = 6000 mL/g_{cat}/h, and a molar ratio of H₂/CO₂/N₂ of 67.5/22.5/10.

Figure S4. Catalytic performance of Cu/Zn/Zr Catalysts with different particle sizes. Reaction Conditions: 260°C, 5 MPa, GHSV = 6000 mL/g_{cat}/h, and a molar ratio of H₂/CO₂/N₂ of 67.5/22.5/10.

Figure S5. XRD (a) and XPS (b) spectrogram of Cu/Zn/Zr Catalyst.

Figure S6. TG-DSC analysis of PDVB.

Figure S7. The water contact angle of used Cu/Zn/Zr-PDVB catalyst.

Figure S8. SEM images of PDVB before (left) and after (right) reaction.

Figure S9. The Arrhenius plots for CO₂ hydrogenation were conducted over Cu/Zn/Zr and Cu/Zn/Zr-PDVB catalysts.

Figure S10. H₂ pulse tests on different catalysts.

Figure S11. SEM images of PDVB (a), Cu/Zn/Zr (b), and Cu/Zn/Zr-PDVB (c).

Figure S12. Water vapor adsorption test of Cu/Zn/Zr and Cu/Zn/Zr-PDVB catalysts.

Figure S13. Photos of anhydrous $CuSO_4$ mixed with PDVB (left) and anhydrous $CuSO_4$ mixed with quartz powder (right) with H_2O/N_2 (30 mL/min) flow at room temperature for different periods.