Dual anchoring strategy to construct ultra-low metal loading

Co/BEA catalyst for propane dehydrogenation

Yulai Lin, ^{abcd} Jun Liang, ^{abcd} Zijun Huang, ^{abcd} Jiaming Dong, ^{abcd} Yongming Luo, * ^{abcd} and Dedong He * ^{abcd}

^aFaculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, PR China. E-mail: <u>luoyongming@kust.edu.cn</u>, dedong.he@qq.com
 ^bKey Laboratory of Yunnan Province for Synthesizing Sulfur-containing Fine Chemicals of Yunnan Province, Kunming 650500, PR China
 ^cThe Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, Kunming 650500, PR China
 ^dThe Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming 650500, PR China

Supporting Information

Catalyst characterization.

X-ray diffraction (XRD) patterns of Al β , DeAl β , xCo/ β -SC and xCo/ β -IM samples were recorded on a Rigaku D/MAXRB XRD instrument (Japan) using Cu K α radiation. H₂-Temperature Programmed Reduction (H₂-TPR) experiments were performed using BSD-C200 Automatic Chemisorption Analyzer. 0.05g catalyst was heated in a 100% Ar (30 mL/min) at a ramp rate of 10 °C/min to 700 °C, and the H₂ signal was tracked using a thermal conductivity detector (TCD).

Transmission electron microscopy (TEM) and high-angle annular dark-field scanning TEM (HAADF-STEM) images, along with energy dispersive X-ray spectroscopy mapping, were obtained using a JEOL JEM-F200 instrument operating at 300 kV. iDPC imaging were performed on a were collected on a Thermofisher Spectra 300 at 300 kV. In order to limit the damage of the electron beam, a fast image recording scheme is adopted, using the electron beam current of 1-2 pm.

X-ray photoelectron spectra (XPS) of catalyst samples were carried out on a PHI 5000 Versa Probe II spectrometer equipped with an Al Kα X-ray source (1486.6 eV).

The UV-Vis spectra were recorded on a TU-1901 spectrophotometer, and BaSO4 was

used as the standard for solid samples.

Pyridine adsorption FT-IR was recorded using Bruker VERTEX 70 spectrometer. Specific procedures were as follows: (1) The supporting wafer (10-12 mg/cm²) of sample was pre-treated in the *in-situ* IR cell equipped with CaF₂ window at 400 °C for 1 h under high vacuum, then cooled down to 150 °C and recorded background spectra between 4000 and 1200 cm⁻¹ with 4 cm⁻¹ spectral resolution and 32 scans. (2) The activated wafer was exposed to pyridine vapor at 150 °C for 0.5 h to obtain saturation adsorption and then the FTIR spectra were scanned after degassed at 150 °C for 1 h. Temperature programmed surface reaction (TPSR) measurements of sample are analyzed using an on-line gas chromatograph, equipped with Flame Ionization Detector (FID) and Thermal Conductivity Detector (TCD). Before measurement, the fresh sample (200 mg, 60-100 mesh) is pretreated in pure N2 (20 ml·min⁻¹) at 873 K for 1 h. After cooling down, the measured sample is heated from 373 to 923 K with a step of 3 K min-1 in 66 mL min-1 of 12% propane flow. The FID and TCD signals of CH₄, C₂H₆, C₃H₆ and H₂ are tracked every 3 min

 C_3H_8 FT-IR spectra were recorded using a BRUKER VERTEX 70 spectrometer equipped with a high-temperature reaction chamber. *In-situ* FT-IR spectra with the C_3H_8 consisted of the following steps: (1) The catalyst was pretreated in pure N₂ at 600 °C for 30 min, then collected the target temperature background data. (2) 5% C_3H_8/N_2 was introduced into the cell. (3) The cell was heated to the desired temperature at a ramp rate of 10°C/min, and FT-IR spectra were acquired at specific temperatures.

Raman spectroscopy is performed by Thermo Fischer DXR Raman Spectrometer with 532 nm laser to analyze the generated coke deposition.

Thermogravimetric-differential thermal analysis (TG-DTA). TG-DTA was measured on a STA449F3 Jupiter instrument. The variation in the weight of spent sample (20 mg) was monitored by increasing the temperature in air (50 mL·min⁻¹) from R.T. to 800 °C with a heating rate of 10°C·min⁻¹.

Supplementary Figures and Tables

Figure. S1. xCo/β-IM catalytic activity, reaction condition:600°C, m_{cat}:0.2g, 12% C₃H₈ in Ar.

Figure. S2.TEM images of $0.25 Co/\beta$ -SC

Figure. S3 TEM images of $0.5 Co/\beta$ -SC

Figure. S4 TEM images of $1.0 Co/\beta$ -SC

Figure. S5. XRD of xCo/ β -IM (a) and spent catalysts (b)

Figure. S6. FT-IR spectra of pyridine adsorption on the different catalysts, desorption at 150 $^{\circ}$ C

Figure. S7. Propane TPSR and MASS signal of production of 0.25/0.5Co/β-SC(a), 1.0/1.5Co/β-SC(b)

Figure. S8. TEM images of spent $0.25 \text{Co}/\beta$ -SC after 110h PDH

Co Samples loadin	Со	M cat		C3H8 °C] Feed	C ₃ H ₈ concentration	Con[%]	Sel[%]	TOF[h ⁻¹]	C ₃ H ₆ formation	Specific activity	k _f		
	loading	[g]	T[℃]						rate mol _{C3H6}	[µmol(C ₃ H ₈)g _{C0} ⁻	[mol _{C3H6} /g _{C0} -	Ref.	
	[wt%]			[L·h⁻¹]					[gc₀ ⁻¹ ·h ⁻¹]	¹ S ⁻¹)]	¹ h ⁻¹ bar ⁻¹]		
0.25Co/β-IM	0.19	0.2	600		12.00%	20.4		670.80	667.44	3163.53	588.69	This	
0.5Co/β-IM	0.379	0.2		0.475	12.00%	27.2		448.38	446.14	2114.59	324.91		
0.25Co/β-SC	0.145	0.2			12.00%	40.1	99.0	1727.79	1719.15	8148.40	1056.78		
0.5CO/β-SC	0.356	0.2		000		12.00%	56.7	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	995.05	990.08	4692.77	638.74	work
1.0Co/β-SC	0.789	0.2				12.00%	52.2		413.34	411.27	1949.35	254.34	
1.5Co/β-SC	1.431	0.2					12.00%	52.0		227.03	225.89	1070.68	139.51
0.25Co/β-SC	0.145	0.2		0.12	10.00%	42.6	99.5	463.51	461.19	2185.96	371.27		
Co-m-Al ₂ O ₃	1.00	0.5	600	0.600	58.80%	34.0	95.0	107.24	101.88	505.75	15.65	1	
Co/y-Al ₂ O ₃	1.10	0.5	600	0.600	58.80%	49.0	85.0	140.50	119.43	662.61	23.79	1	
5Si-5Co-Al ₂ O ₃	5.00	0.15	590	1.620	20.00%	25.3	91.0	143.69	130.76	677.68	66.22	2	
Co-SBA15	2.00	0.4	600	0.300	14.29%	37.0	96.0	36.48	35.02	172.06	19.29	3	
Co/y- Al2O3-NS	5.00	0.3	600	0.164	9.09%	32.0	82.0	9.18	7.53	43.29	8.00	4	
Co/y- Al2O3-NF	5.00	0.3	600	0.164	9.09%	30.0	70.0	8.61	6.02	40.58	7.76	4	
Co/y- Al2O3-NP	5.00	0.3	600	0.164	9.09%	26.0	67.0	7.46	5.00	35.17	7.31	4	
Co-Al	11.10	0.2	600	0.060	5.00%	34.0	81.0	2.42	1.96	11.40	3.69	5	
Co-mSiO ₂	2.00	0.5	600 550	0.180	10.00%	36.0	71.0	17.04	12.10	80.36	12.85	6	
Co-Zr/SiO2	1.50	0.5		0.036	3.00%	9.5	97.0	1.20	1.16	5.65	7.90	7	
Co- Al ₂ O ₃ -HAT	5.00	0.15	590	0.240	20.00%	24.8	97.0	20.87	20.24	98.41	9.73	8	
Co/y- Al ₂ O ₃	5.00	3	560	0.715	99.30%	25.0	80.0	3.13	2.51	14.78	0.32	9	
CoOx@MFI	1.00	0.2	600	0.120	10.00%	58.0	93.0	91.51	85.10	431.55	96.25	10	
CoO/AlO	3.00	0.3	600	0.480	40.00%	40.0	95.0	56.10	53.29	264.55	11.30	11	
Co-MFI	1.00	0.2	580	0.036	5.00%	38.0	96.0	17.99	17.27	84.82	26.51	12	
Co@MFI	6.00	0.3	600	0.180	20.00%	60.0	95.0	15.78	14.99	74.40	7.03	13	
Co@MFI-B50	3.00	0.1	600	0.600	100.00%	35.0	92.0	184.06	169.34	868.06	17.53	14	
Co-m-Al ₂ O ₃	1.00	0.5	600	0.592	58.00%	43.0	95.0	133.78	127.09	630.92	20.38	1	
Zn1C01/NC	1.00	0.1	600	0.090	5.00%	20.0	95.0	47.33	44.95	223.21	100.74	15	
Co@Mo-S-1	1.40	0.3	600	0.750	25.00%	40.0	95.0	187.82	178.43	885.77	57.55	16	
5C01.6Fe/Al 2O3	6.60	0.1	590	0.300	20.00%	22.0	95.0	26.29	24.98	124.01	13.25	17	
Co-Zr/SiO2	7.50	0.5	550	0.036	3.00%	9.0	97.0	0.23	0.22	1.07	1.57	7	

 Table S1. Summary of PDH performance data for reported Co containing catalysts.

Samples	M loading [wt%]	M cat [g]	T[℃]	C3H8 Feed [L∙h ⁻¹]	C3H8 concentration	Con[%]	Sel[%]	TOF[h ⁻¹]	C3H6 formation rate mol _{C3H6} [gc ₀ ⁻¹ ·h ⁻¹]	Specific activity [µmol(C3H8)gm [−] ¹ S ^{−1})]	k _f [molcзнь/gм ⁻ ¹ h ⁻¹ bar ⁻¹]	Ref.
PtLa/mz-deGa	1.00	0.05	580	0.280	100.00%	40.0	98.0	1952.19	1913.15	2779.76	84.90	18
PtSn/2Mg-SBA-15	1.00	0.2	580	0.840	70.00%	35.7	95.0	1305.82	1240.53	1859.38	49.55	19
PtGa-R	0.50	0.2	600	0.600	10.00%	40.0	95.0	2090.14	1985.64	2976.19	460.52	20
PtZnAl _{0.2} /SBA-15	0.50	0.2	590	0.253	16.67%	55.9	99.0	1233.14	1220.81	1755.89	177.97	21
Pt-Sn/CeO2	1.00	0.1	580	0.120	3.85%	39.5	84.5	412.80	348.82	587.80	232.88	22
Pt-Sn/Al ₂ O ₃	1.00	0.1	580	0.120	3.85%	32.6	71.4	340.69	243.26	485.12	208.10	22
Pt/Zn-Al ₂ O ₃	0.85	0.1	600	0.252	14.00%	46.0	97.0	1187.69	1152.06	1691.18	186.83	23
Pt- Zn ₃ O _x @RUB- 15	0.50	1	600	0.594	33.00%	40.0	96.0	413.85	397.29	589.29	29.79	24
Rh(0.5)Sn(3.0)	0.50%	0.1	600	0.400	33.30%	30.0	96.0	1102.39	1058.29	2975.89	160.98	25
NiV2Ox/Al2O3	3.00	0.5	500	0.216	16.67%	16.5	95.1	6.23	5.92	29.46	4.65	26
0.5NiSiBeta	0.50	0.3	600	0.075	6.25%	35.0	84.0	45.85	38.52	217.01	55.70	27
Ni ₁ /Al ₂ O ₃	1.00	0.5	580	0.240	20.00%	29.4	93.0	36.97	34.39	175.00	15.92	28
0.2Ni0.06Zn-S-1	0.20	0.32	600	0.300	23.26%	20.0	90.0	245.62	221.06	1162.53	114.00	29
(1:1 Ni:Ga) @Ni3Ga/Al2O3	5.00	0.1	600	0.120	10.00%	13.0	94.0	8.17	7.68	38.69	12.34	30
(3Fe:P)/Al2O3	13.30	0.14	600	0.030	5.00%	12.0	82.4	0.48	0.40	2.40	1.64	31
(2Fe:P)/Al2O3	3.00	0.2	600	0.600	5.00%	35.0	92.0	0.34	0.28	1.68	1.15	31
(1Fe:P)/Al2O3	1.00	0.4	600	0.592	5.00%	43.0	95.0	0.17	0.14	0.84	0.57	31
20Fe/5S-Al	20.00	2	560	0.009	1.20%	20.0	80.0	0.01	0.01	0.05	0.10	32
Cr-MSU-x28	1.27	0.2	600	0.180	10.00%	30.0	90.0	49.35	44.42	263.64	45.87	33
Cr/HZSM-5(260)	5.00	0.2	580	0.060	5.00%	32.6	94.2	4.54	4.28	24.26	8.07	34
Mo-SH	5.00	.00 0.5	600	0.100	10.000/	37.0	92.0	7.61	7.00	22.02	3.49	35
			0.5	0.0	0.0	550	0.120	10.00%	20.0	86.0	4.11	3.54
12V/Al	12.00	0.25	600	0.420	28.00%	32.0	94.0	10.19	9.58	55.56	3.45	36
1VZr	1.00	0.4	550	0.420	14.00%	25.0	90.0	59.70	53.73	325.52	46.95	37
PV-0.7	10.00	1	610	0.360	20.00%	50.0	88.5	4.09	3.62	22.32	1.77	38
7.0 5.1.2	1 20	0.05	550	0.060	40.000/	31.0	87.0	1447.70	1259.50	6150.79	338.15	39
2110-3-1_3	1.20	0.05	600	0.900	40.00%	40.0	88.0	1868.00	1643.84	7936.51	339.14	39

Table S2. Summary of PDH performance data for reported noble& non- noble metals containing

catalysts.

ZnO@S-1	4.00	0.15	600	0.362	67.00%	31.4	93.9	55.26	51.89	234.80	6.58	40
---------	------	------	-----	-------	--------	------	------	-------	-------	--------	------	----

Supplementary References

- F. Ebert, P. Ingale, S. Vogl, S. Praetz, C. Schlesiger, N. Pfister, R. N. d'Alnoncourt, B. R. Cuenya, A. Thomas, E. Gioria and F. Rosowski, *Acs Catalysis*, 2024, **14**, 9993-10008.
- 2. Y. H. Dai, Y. Wu, H. Dai, X. Gao, S. Y. Tian, J. J. Gu, X. F. Yi, A. M. Zheng and Y. H. Yang, *Journal of Catalysis*, 2021, **395**, 105-116.
- 3. Z. J. Huang, D. D. He, W. H. Deng, G. W. Jin, K. Li and Y. M. Luo, *Nat Commun*, 2023, **14**.
- N. Dewangan, J. Ashok, M. Sethia, S. Das, S. Pati, H. Kus and S. Kawi, *Chemcatchem*, 2019, 11, 4923-4934.
- B. Hu, W. G. Kim, T. P. Sulmonetti, M. L. Sarazen, S. Tan, J. So, Y. J. Liu, R. S. Dixit, S. Nair and C. W. Jones, *Chemcatchem*, 2017, 9, 3330-3337.
- 6. Z. F. Bian, N. Dewangan, Z. G. Wang, S. Pati, S. B. Xi, A. Borgna, H. Kus and S. Kawi, *Acs Applied Nano Materials*, 2021, **4**, 1112-1125.
- Y. Q. Zhao, H. Sohn, B. Hu, J. Niklas, O. G. Poluektov, J. Tian, M. Delferro and A. S. Hock, Acs Omega, 2018, 3, 11117-11127.
- Y. H. Dai, J. J. Gu, S. Y. Tian, Y. Wu, J. C. Chen, F. X. Li, Y. H. Du, L. M. Peng, W. P. Ding and Y. H. Yang, *Journal of Catalysis*, 2020, **381**, 482-492.
- 9. Y. N. Sun, Y. M. Wu, H. H. Shan and C. Y. Li, *Catalysis Letters*, 2015, **145**, 1413-1419.
- J. L. Liu, J. N. Wang, Y. N. Zhang, W. Zheng, Y. B. Yao, Q. Liu, X. J. Zhang, Y. A. Yang and X. Wang, *Acs Catalysis*, 2023, **13**, 14737-14745.
- 11. Q. Shi, Y. Y. Song, D. Li, Y. Wang, Z. Xie, X. Q. Fan, L. Kong, X. Xiao and Z. Zhao, *Journal of Catalysis*, 2024, **433**.
- 12. Z. P. Hu, G. Qin, J. Han, W. Zhang, N. Wang, Y. Zheng, Q. Jiang, T. Ji, Z. Y. Yuan, J. Xiao, Y. Wei and Z. Liu, *J Am Chem Soc*, 2022, **144**, 12127-12137.
- Y. Xu, W. Hu, Y. Li, H. Su, W. Liang, B. Liu, J. Gong, Z. Liu and X. Liu, *ACS Catalysis*, 2023, 13, 1830-1847.
- 14. X. Lv, M. Yang, S. Song, M. Xia, J. Li, Y. Wei, C. Xu, W. Song and J. Liu, *ACS Appl Mater Interfaces*, 2023, DOI: 10.1021/acsami.2c21076.
- 15. Y. C. Chai, S. H. Chen, Y. Chen, F. F. Wei, L. R. Cao, J. Lin, L. Li, X. Y. Liu, S. Lin, X. D. Wang and T. Zhang, *Journal of the American Chemical Society*, 2023, **146**, 263-273.
- Z. Q. Qu, G. Y. He, T. J. Zhang, Y. Q. Fan, Y. X. Guo, M. Hu, J. Xu, Y. H. Ma, J. C. Zhang, W. B. Fan, Q. M. Sun, D. H. Mei and J. H. Yu, *Journal of the American Chemical Society*, 2024, 146, 8939-8948.
- 17. C. W. Zhang, J. Wen, L. Wang, X. G. Wang and L. Shi, *New J Chem*, 2020, **44**, 7450-7459.
- 18. R. Ryoo, J. Kim, C. Jo, S. W. Han, J. C. Kim, H. Park, J. Han, H. S. Shin and J. W. Shin, *Nature*, 2020, **585**, 221-+.
- 19. B. Li, Z. X. Xu, F. L. Jing, S. Z. Luo and W. Chu, *Appl Catal a-Gen*, 2017, **533**, 17-27.
- Y. Xu, J. N. Chen, X. L. Yuan, Y. Zhang, J. Q. Yu, H. Y. Liu, M. H. Cao, X. Fan, H. P. Lin and Q. Zhang, *Ind Eng Chem Res*, 2018, **57**, 13087-13093.
- 21. X. Q. Fan, J. M. Li, Z. Zhao, Y. C. Wei, J. Liu, A. J. Duan and G. Y. Jiang, *Catal Sci Technol*, 2015, **5**, 339-350.
- 22. H. F. Xiong, S. Lin, J. Goetze, P. Pletcher, H. Guo, L. Kovarik, K. Artyushkova, B. M.

Weckhuysen and A. K. Datye, Angew Chem Int Edit, 2017, 56, 8986-8991.

- 23. Y. N. Xing, B. N. Li, L. L. Kang, Y. Su, X. L. Pan, L. Li, H. Liu, X. Y. Liu, A. Q. Wang and T. Zhang, *J Phys Chem C*, 2024, **129**, 244-252.
- D. Liu, F. Jiang, Q. Zhang, W. H. Huang, Y. Zheng, M. Chen, L. Wu, R. Qin, M. Wang, S. Zhang, L. Chen, K. Yan, L. Zhou, Y. Zhao, L. Gu and G. Chen, *ACS Nano*, 2024, **18**, 34671-34682.
- 25. P. Natarajan, H. A. Khan, A. Jaleel, D. S. Park, D. C. Kang, S. Yoon and K. D. Jung, *Journal of Catalysis*, 2020, **392**, 8-20.
- 26. G. M. Li, B. Wang, X. C. Dai, F. Shi, Y. Ding and X. J. Cui, *Catal Sci Technol*, 2025, **15**, 318-322.
- 27. X. Zhou, S. J. Wu, Y. M. Luo, L. H. Zhu and D. D. He, *Energy & Fuels*, 2023, **37**, 450-458.
- R. Ma, J. X. Gao, J. J. Kou, D. P. Dean, C. J. Breckner, K. J. Liang, B. Zhou, J. T. Miller and G. J. Zou, *Acs Catalysis*, 2022, **12**, 12607-12616.
- 29. C. M. Huang, D. M. Han, L. J. Guan, L. H. Zhu, Y. Mei, D. D. He and Y. Zu, *Fuel*, 2022, **307**.
- Y. He, Y. J. Song, D. A. Cullen and S. Laursen, *Journal of the American Chemical Society*, 2018, **140**, 14010-14014.
- S. Tan, B. Hu, W. G. Kim, S. H. Pang, J. S. Moore, Y. J. Liu, R. S. Dixit, J. G. Pendergast, D. S. Sholl, S. Nair and C. W. Jones, *Acs Catalysis*, 2016, 6, 5673-5683.
- Y. N. Sun, L. Tao, T. Z. You, C. Y. Li and H. H. Shan, *Chemical Engineering Journal*, 2014, 244, 145-151.
- 33. J. Baek, H. J. Yun, D. Yun, Y. Choi and J. Yi, *Acs Catalysis*, 2012, **2**, 1893-1903.
- 34. Z.-P. Hu, Y. Wang, D. Yang and Z.-Y. Yuan, *Journal of Energy Chemistry*, 2020, **47**, 225-233.
- 35. M. A. Abedin, S. Kanitkar, S. Bhattar and J. J. Spivey, *Appl Catal a-Gen*, 2020, 602.
- 36. G. Liu, Z. J. Zhao, T. F. Wu, L. Zeng and J. L. Gong, *Acs Catalysis*, 2016, 6, 5207-5214.
- Y. F. Xie, R. Luo, G. D. Sun, S. Chen, Z. J. Zhao, R. T. Mu and J. L. Gong, *Chem Sci*, 2020, **11**, 3845-3851.
- Y. Gu, H. J. Liu, M. M. Yang, Z. P. Ma, L. M. Zhao, W. Xing, P. P. Wu, X. M. Liu, E. L. N. Mintova, P. Bai and Z. F. Yan, *Appl Catal B-Environ*, 2020, **274**.
- D. Zhao, X. N. Tian, D. E. Doronkin, S. L. Han, V. A. Kondratenko, J. D. Grunwaldt, A. Perechodjuk, T. H. Vuong, J. Rabeah, R. Eckelt, U. Rodemerck, D. Linke, G. Y. Jiang, H. J. Jiao and E. V. Kondratenko, *Nature*, 2022, **601**, E8-E8.
- 40. S. J. Song, K. Yang, P. Zhang, Z. J. Wu, J. Li, H. Su, S. Dai, C. M. Xu, Z. X. Li, J. Liu and W. Y. Song, *Acs Catalysis*, 2022, **12**, 5997-6006.