Supporting Information

Controllable Sulfur Vacancy Engineering and Lean-Liquid System for Enhanced Solar-Driven Hydrogen Evolution on

Metal Sulfide Photocatalysts

Lingling Ding^a, Kun Li^a, Kun Chang^{a*}

^a Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China

Figure S1. SEM images of CIZS (a-b) before and (c-d) after vulcanization.

Figure S2. EDX elemental mapping images of CIZS.

Figure S3. SEM images of (a-c) 0S_v/CIZS, (d-f) 10S_v/CIZS, (g-i) 30S_v/CIZS.

Figure S4. TEM images of 10 S_v /CIZS.

Figure S5. HRTEM images of 10 S_v /CIZS.

Figure S6. XPS spectra of $0-30S_v/CIZS$.

Figure S7. (a) Corresponding Tauc plots, (b) Mott-schottky curves, (c) VB-XPS spectra of $0-30S_v/CIZS$.

Based on the UV-VIS diffuse reflection spectrum, the semiconductor band gap is calculated using the Tauc formula. As depicted in Figure S7a, it can be observed that the band gaps of 0-30Sv/CIZS are 2.07, 2.08, 2.10, 2.11, and 2.12 eV respectively. The Mott-Schottky test is a commonly used analytical method for electrochemical testing of photocatalytic semiconductor materials. Hence, to clarify the semiconductor properties of S_v/CIZS, a Mott-Schottky test was carried out on the S_v/CIZS photocathode at 2000 Hz, as presented in Figure S7b. The slope of the measured $1/C^2$ versus potential is negative, which is in line with the negative slope characteristic of a typical p-type semiconductor. The flat-band potential of S_v/CIZS is approximately 0.91 V relative to the reversible hydrogen electrode. For the 30S_v/CIZS sample, due to the overly long PCVD treatment time, it induces the generation of unsaturated coordination sulfur atoms. This leads to an increase in the charge density within the Cu-S, In-S, and Zn-S bonds, and the electron density of the S element also increases, ultimately raising the flat band potential of the semiconductor to 0.98 V. Figure S7c displays the VB-XPS spectra of the S_v/CIZS samples. According to the conversion formula, the valence bands of the samples are 1.45, 1.40, 1.33, 1.23, and 1.19 V respectively.

Figure S8. Band structures of 0-30S_v/CIZS.

Figure S9. Photocatalytic HER under visible-light ($\lambda > 420$ nm) irradiation of 0- $30S_v/CIZS$.

Figure S10. Photocurrent density vs potential curves of 0-30 $S_v/CIZS.$

Figure S11. Chopped light time-dependent photocurrent of $0-30S_v/CIZS$.

Figure S12. Electrochemical impedance spectroscopy Nyquist diagram of 0-

30S_v/CIZS.

Figure S13. (a) Liquid-phase suspension system, (b) Lean-liquid system

Figure S14. UV-Vis DRS spectra of $10S_v/CIZS$ and $10S_v/CIZS@Pt$.

Figure S15. (a-d) Infrared thermograms of typical reaction systems using
10S_v/CIZS@Pt at various illumination times by visible-light (λ > 420 nm) irradiation;
(e) Correlation of illumination time and temperature.

Figure S16. Test images of $10S_v/CIZS@Ru$ photocatalyzed HER under different wavelength irradiation.

Figure S17. AQY of 10S_v/CIZS@Ru with monochromatic light.

Figure S18. Cyclic test of photocatalytic hydrogen evolution performance of $10S_v/CIZS@Ru$ semiconductor (λ >420 nm).

		1			
Sample	BE (eV)	Cont. (%)	BE (eV)	Cont. (%)	R
0S _v /CIZS	163.51	29.56	162.33	70.44	0.42
5S _v /CIZS	163.38	31.91	162.11	68.09	0.47
10S _v /CIZS	163.34	33.59	162.06	66.41	0.51
15S _v /CIZS	163.28	33.22	162.04	66.78	0.50
30S _v /CIZS	163.10	38.81	161.98	65.19	0.59

Table S1. Surface compositions and chemical state of sulfur species over as-prepared

photocatalysts

Table S2 The AQY of $10S_{\!v}\!/\text{CIZS}@\text{Ru}$ for photocatalytic H_2 production.

λ (nm)	H ₂ evolution (μmol·h ⁻¹)	I (mW·cm ⁻²)	AQE (%)
365	23.65	9.77	44.01
420	18.50	10.34	28.27
450	31.75	22.96	20.39
500	12.63	17.47	9.39
550	7.26	19.58	4.25
650	0.84	15.92	0.53

Table S3. Kinetic parameters of the charge carrier decay in $10S_v/CIZS$ and

105 _v /CIZ5@Ku					
Catalyst	τ_1 (ns)	A_1	τ_2 (ns)	A_2	τ_{avg} (ns)
0S _v /CIZS	0.6763	43.52	5.236	56.48	3.5836
10S _v /CIZS	0.6182	34.61	5.7042	65.39	3.9441
10Sv/CIZS@Ru	0.7177	25.33	8.0350	74.67	6.1816

10S_v/CIZS@Ru

Table S4 Comparison of the photocatalytic H_2 production performances in this study

Photocatalysts	Light source Sacrificial agent		H ₂ evolution (μmol g ⁻¹ h ⁻¹)	Year	Ref.
Photocatalytic					
CIZS-rGO		Na ₂ S/Na ₂ SO ₃	3800	2013	[1]
(Solvothermal method)	800 W Xe-Hg lamp	solution			
CIZS QDs	300 W Xe lamp	Na ₂ S/Na ₂ SO ₃	156 1	2018	[2]
(Hydrothermal method)	$(\lambda > 420 \text{ nm})$	solution	436.4		
CIZS QDs	Xe lamp	0.2MAA	14400	2018	[3]
(One-pot aqueous method)	(λ= 400-780 nm).	(pH=5.0)	14400		
CZIS nanobelts	200 W X 1	Na ₂ S/Na ₂ SO ₃		2020	[4]
(Colloidal method)	300 W Xe lamp	solution	3350		
CIZS@Ru	Xe lamp	Na ₂ S/Na ₂ SO ₃	4970	2022	[5]
(Gel-assisted method)	$(\lambda > 420 \text{ nm})$	solution	4860		
CIZS/MoS ₂ /CDs	white LED light	0.2 M L-ascorbic	2707	2022	[6]
(Hydrothermal method)	(AM 1.5G)	acid	3706		
NiS ₂ /PVP/CIZS	300 W Xenon lamp	Na ₂ S/Na ₂ SO ₃	52(0.4	2022	[7]
(Hydrothermal method)	$(\lambda > 420 \text{ nm})$	solution	5369.4		
S _v /CIZS@Ru	300 W Xenon lamp	Na ₂ S/Na ₂ SO ₃	12226.2	This	
(Hydrothermal method)	$(\lambda > 420 \text{ nm})$	solution	13336.2	work	
Photothermal-catalytic					
CoP@ZnIn ₂ S ₄ @Co ₃ O ₄	300 W Xenon lamp	Triethanolamine	1051	2021	[8]
(Solvothermal approach)	$(\lambda > 400 \text{ nm})$	(71.2 °C)	4254		
$Pt/ZnIn_2S_4$	300 W Xe lamp	Triethanolamine	10400	2022	[9]
(Hydrothermal method)	(200 mW cm^{-2})	(~45 °C)	19400		
FeS ₂ @ZIS	300 W Xe lamp	Triethanolamine	5050	2023	[10]
(Solvothermal method)	(AM 1.5G)	(41.9 °C)	5050		
CDs/Ni ₃ P/ZIS	300 W Xe lamp	Triethanolamine	1000 70	2024	[11]
(Hydrothermal method)	(200 mW cm^{-2})	(~50 °C)	1880.78		
Fe ₃ O ₄ @SiO ₂ /ZIS	300 W Xe lamp	Triethanolamine	1050 5	2024	[12]
(Hydrothermal method)	(AM 1.5G)	(72.5 °C)	1258.5		
FNS@ZIS	300 W Xe lamp	Na ₂ S/Na ₂ SO ₃	7700	2024	[13]

with literature results.

(Solvothermal method)	Solution (32.8 °C)				
CNS/ZIS	200 W V - 1	Triethanolamin	17169	2024	[14]
(Solvothermal method)	300 w Xe lamp	(~60 °C)	1/108		
S _v /CIZS@Ru	300 W Xenon lamp	Na ₂ S/Na ₂ SO ₃	12226	This	
(Hydrothermal method)	$(\lambda > 420 \text{ nm})$	solution (53.8 °C)	15550	work	

References (S)

[1] X. Tang, Q. Tay, Z. Chen, Y. Chen, G.K.L. Goh, J. Xue, J. Mater. Chem. A, 2013, 1, 6359-6365.

[2] L. Tan, Y. Liu, B. Mao, B. Luo, G. Gong, Y. Hong, B. Chen, W. Shi, *Inorg. Chem. Front.*, 2018, 5, 258-265.

[3] X.Y. Liu, G. Zhang, H. Chen, H. Li, J. Jiang, Y.T. Long, Z. Ning, Nano Res., 2018, 11, 1379-1388.

[4] L. Wu, Q. Wang, T.T. Zhuang, Y. Li, G. Zhang, G.Q. Liu, F.J. Fan, L. Shi, S.H. Yu, Nat. Commun., 2020, 11, 5194.

[5] Z. Xie, W. Xu, F. Fang, K. Zhang, X. Yu, K. Chang, Chem. Eng. J., 2022, 429, 132364.

[6] Q. Chen, Y. Liu, X. Gu, D. Li, D. Zhang, D. Zhang, H. Huang, B. Mao, Z. Kang, W. Shi, Appl. Catal. B Environ., 2022, 301, 120755.

[7] T. Feng, Y. Cao, R. Gao, G. Su, H. Li, B. Dong, L. Cao, Int. J. Hydrogen Energy 2022, 47, 9934-9945.

[8] T. Zhang, F. Meng, M. Gao, W.L. Ong, K.G. Haw, T. Ding, G.W. Ho, S. Kawi, *EcoMat*, 2021, 3, e12152.

[9] X. Guo, J. Li, Y. Wang, Z. Rui, Catal. Today, 2022, 402, 210-219.

[10] K. Chen, Y. Shi, P. Shu, Z. Luo, W. Shi, F. Guo, Chem. Eng. J., 2023, 454, 140053.

[11] J. Jia, X. Guo, Y. Tang, W. Zeng, H. Zeng, Z. Rui, *Int. J. Hydrogen Energy*, 2024, 28, 122-130.

[12] Y. Shi, Z. Chen, P. Hao, P. Shan, J. Lu, F. Guo, W. Shi, J. Colloid Interf. Sci., 2024, 653, 1339-1347.

[13] S. Wang, D. Zhang, X. Pu, L. Zhang, D. Zhang, J. Jiang, Small, 2024, 20, 2311504

[14] H. Qin, W. Zhang, S. Zhao, Z. Yao, Q. Zheng, P. Zhang, S. Zhang, X. Xu, *Chem. Eng. J.*, 2024, 489, 151213.