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S1 Theoretical Method

S1.1 Three-Dimensional Reference Interaction Site Model Self-

Consistent Field (3D-RISM-SCF) Theory

As 3D-RISM-SCF has been described in detail in the literature,! only a brief summary of
the framework is provided here. The equations are given in atomic units, unless otherwise
stated. From the variational principle of free energy, the Kohn-Sham equation is obtained

as?

1
—§V2 + Vis + Vi + Vie + Vial| ¥i(r) = €i9i(r), (s-1)

where 1); is the Kohn—-Sham orbital, V, is the nuclear attraction potential, V4, is the Hartree
potential, V,. is the exchange-correlation potential, and Vi, is the electrostatic potential

generated by the solvent. The electron density pY is given by
pU(r) =Y filwar)l?, (s-2)
where f; is the occupation number of the ith orbital given by the Fermi-Dirac function,?

2
fle) = |+ exp <€;€;_;e>

) (S_B)

where ¢; is the energy and p. is the chemical potential of an electron, 7.e., Fermi level.
In this equation, a closed-shell electronic structure is assumed. The electric potential of
electrochemical systems is determined using p in this study.

The 3D-RISM equation is given by?*

ha(r) = ca(r) * {way (1) + pahay (1)} (s-4)

where “+’” denotes a convolution integral, pY is the average number density of the ath solvent
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oy (k) is the intramolecular correlation

site, a and 7 denote the atomic sites of solvent, w
function between the ath and ~th solvent sites, and h,(r) and c,(r) are the total and direct
correlation functionals, respectively. The superscript VV symbolizes the solvent—solvent
pair correlation function. The density distribution function of the solvent site ~ is given by

g,(r) = hy(r) + 1. Because Eq. (s-4) has two unknown functions, h and c, the Kovalenko—

Hirata closure,?

)1 = exp{x,(r)} (xy <0), (5)

L+x,(r) (x> 0),
Xy(r) = —Buy(r) + hy(r) — ¢y (r), (s-6)

was used in this study. In Eq. (s-6), § is equal to 1/kgT" and u, is the site-site interaction

potential given as the sum of the electrostatic and Lennard—Jones (LJ) potentials,

(1) = 4 (Vue1) ~ Va(w)} + 3 4 { (72) - (lf—R|)} e

where o, and ¢;, are parameters of the LJ potential defined by the jth and yth atomic
cites, q;/ is the charge on the yth solvent site, R; is the jth solute atomic site, and Vi is
the electrostatic potential generated by the nuclear charges on the solute. Vj(r), which is
originally used as the interaction potential in Eq. (s-1) by negatively charged electrons, has
a negative sign.

The free energy of the electrochemical system is defined using the grand potential 2 given

as
Q= FEo+ Ap — 1N, (s-8)

where F is the internal energy of the electrode system calculated using the density func-

tional theory (DFT) method, Ay is the solvation free energy, and NN, is the total number of
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electrons. Ay is given by?
vV
=% O [ 5@ 0 (—hm) - o) = 5 e ), (-9)

where O(z) is the Heaviside step function. The electrostatic potential generated by the

solvent is given by

V() = —4m {Z pX(—qX)gv(r)} : (s-10)

v

and applied in Eq. (s-1). In Eq. (s-10), qy is assigned a mnegative sign to account for
interactions with electrons.

The finite charge correction is not needed to solve Eq. (s-1) because the entire system
consisting of a solute (i.e., the electrode and reactant) and solvent is charge neutral. How-
ever, Viu(r) — Vi(r) in Eq. (s-7) represents the electrostatic potential generated by the
charged solute. Thus, the formula described in the next section is adopted for the 3D-RISM

calculations included in the 3D-RISM-SCF method.

S1.2 Theoretical Formula for Charged Materials

We have presented a theoretical formula to determine the solvation structure around a
charged material comprising an electrode in our previous study.® This formula is based
on that proposed by Vyalov et. al.,% which includes the contribution of an infinitely thin
charged layer to the solvation structure using an analytical framework, thereupon the 3D-
RISM calculation (i.e., without DFT calculation) of a charged slab can be performed. An
infinitely thin charged layer is not sufficiently suitable for 3D-RISM-SCF because the elec-
trons are spatially distributed. Therefore, we consider a charged slab with a finite thickness,

where the slab surface is parallel to the x-y plane. Its electrostatic potential interaction with
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solvent is then given by

ulw(z) = q}Y/UUL (2). (s-11)

v7:(z) is the electrostatic potential generated by the charged slab with a surface charge

density or,”

F(z=2)+%FL+C (2—2/<%)

v (z) = =27 X (s-12)

olz — 2| +C (Jz — 20| > L),

where L and zp are the thickness and center position of the charged slab, respectively.
The results obtained are independent of the arbitrary parameter C' because of the charge
neutrality of the bulk homogeneous solvent. Therefore, C' is omitted in this section.

The direct correlation function is partitioned as

ey(r) = & (r) + ¢5(x), (s-13)

where ¢ (r) is the long-range electrostatic interaction given by

(r) =~ (2) (-14)

and c(r) is the short-range interaction. The 3D-RISM equation can then be rewritten as

ha (1) = {ca(r) + ca(r) } * {way (r) + pl ) (r)} - (s-15)
Thus, the Kovalenko—Hirata closure becomes

hr)+1 = exp {x,(r)} (x, <0), (5-16)

L+x,(r) (x> 0),
Xy(r) = —Bui(r) + hy(r) — (). (s-17)
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u?, is the sum of the Lennard-Jones and short-range electrostatic interactions,

) = Y (Viuel1) ~ W) + 3 e { (z2) - (ﬁ)} e

il

where V} is calculated from the difference between the electron density and slab charge per

unit thickness o,/L,

—4r {p"(r) = (774)} (|2 — 2| <

—4mp"(r) (2 = 2] >

);
)-

(s-19)

N~ o

o1, has a negative sign because electrons have a negative charge. Note that the sum of the
potentials, ul (r) + uS(r), reproduces the total potential u, in Eq (s-7).

The long-range part of the total correlation function is expressed as®
hy(r) = co(r)* {way () + pahay (r)}
= SODTA [ YD) e )

’I‘—I" 00') o(.t / o
- Z / i v (2")dr" —v7(2), (s-20)

a(az#y)

where [, is the intramolecular distance between o and -y sites, R indicates that integration

is performed over the total space, and the electroneutrality condition of the bulk solvent,

> / WXV () + pYRYY (r)dr = 0, (s-21)

is applied. Because of the translational symmetry along the z and y directions of the flat
charged slab, A (r) in Eq. (s-20) depends only on the z coordinate (i.e., independent of the

x and y coordinates). The third line of Eq. (s-20) can be calculated using the following
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equations:

/ S(Jr — /| — m)| ol
R 47'('[2,y
_ |z — 20| for |2 — zo| > las, o)
2;” {(z—20)+12,} for |z —z| <lay,
and
r =1 =lay) ¢, , ) ) /
(2" — 20)* — |2/ — 20| } dr
/ (22| <L/2) ArlZ, { }
1
Olay — |2 —2) - {(z’—zo)Q— 2" — 2|} d?'. (s-23)

2oy J1z—z<L)2

R(|z" — 20| < L/2) in the first line of Eq. (s-23) indicates that integration is performed
over the space |2/ — zo| < L/2, and cylindrical coordinates (p' = /2’2 + y'?) are introduced.

O(lay — |z — 2'|) is the Heaviside step function given by

, 0 forly, — |z —2'| <0,
Ol — |2 — ') = (5-24)

1 forlyy, — |2 —2'| > 0.
The one-dimensional integral along the z’-direction on the right-hand side of Eq. (s-23)
can be solved numerically using fine grid points because the computational cost is low.

Therefore, the computational cost to solve Eq. (s-20) is mainly determined by the second

line. Fortunately, the second line can be rewritten as

—ﬁ}jmﬂa/ln%ﬁwr—ﬂoﬁf@v—v%@}
_ _gzpaqa / {/y B (|r — o)) da’dy } (o) — ()} 2. (s-25)

z

The integration over z’ and y' in Eq. (s-25) is needed to be calculated only once before
the iterative DFT and 3D-RISM calculations because of its dependence only on hYY, that

Yoo

is, the total correlation function of the homogeneous bulk solvent. Therefore, only the
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integration over 2’ is needed to be performed during the 3D-RISM-SCF procedure, and the
computational cost is almost negligible.

In the present approach, the DFT and 3D-RISM calculations can be directly connected
in the sense that a unified grid-point basis set is used. The computational cost for the
calculation of this study increases significantly because a large box is required to calculate
the electric double layer. Thus, the SALMON program is highly suitable for this study owing
to its applicability to large materials.

Dipole correction® is not used in this study because it causes only a small variation when
the vacuum region is very large, as is the case in this study. Using the present approach,
dipole correction can be applied by adding two charged slabs, whose electrostatic potential
is defined by Eq. (s-12), to describe the potential shifts due to dipolar polarization.

In this study, the thickness L of the charge slab was set to 0.336 A, and the charged
slab was placed in the position of the surface Pt atom layer. In calculating hlv(z) using Eq.
(s-20), the contribution of the long-distance area depends on numerical errors due to the
convergence threshold and fast Fourier transform procedure. Thus, hmf values less than 1
x 1071 were rounded off during integration.

Our theoretical formula was derived simply by rewriting the original 3D-RISM equation,
that is, no additional approximation was incorporated in our method as compared to the
original 3D-RISM method. Therefore, numerous benchmarking results using the original
3D-RISM method is transferable for checking the validity of our method.

In our method, the electrode potential is given as the difference between the Fermi level
and the computed SHE potential. To achieve the convergence of the chemical potential of
electrons, we used the procedure proposed in a previous study.? Once the chemical potential
is specified, we performed the constant-N, calculations by varying N, many times until
the specified chemical potential was obtained. The converged Fermi level was obtained by
repeatedly performing the linear extrapolation where the system charge was treated as a
function of the Fermi level. Through repeated calculations, we confirmed that the calculated

Fermi level is a monotonic function of the system charge. More sophisticated algorithms

S8



have been proposed;!® however, further improvement to the algorithm is beyond the scope

of this study.

S1.3 Formula for Energy Calculation

The Kohn-Sham equation is solved in the same manner as that for conventional neutral
systems because the entire system consisting of a solute (i.e., the electrode and reactant)
and solvent is charge neutral. However, there are additional considerations when calculating
FE.. because the charge neutrality of the total system consisting of a solute and solvent is

not useful to calculate Eg given by
ele Z <¢z ‘ V2 + ‘/nuc + 1‘/h + V;cc’ wz> + Z Vnuc rnuC)Znuc(rnuC) (8_26)

The second term is the nuclear—nuclear electrostatic interaction energy. In this study, the

total electrostatic interaction energy Fs is rewritten as

Z <wz ‘V;mc + Vh‘ wz> + Z ‘/nuc I'nuc Znuc(rnuc)

nuc

9 (0%
/ {V;luc + ‘/h( { + Z 6 rnuc nuc(r)} dr — 5 Znucﬁ’

nuc

where the Ewald method is applied using the parameter a.'* We further introduce a uniform

background charge correction”

{vm(r) AR vcrc(r)} , (s-28)

N | —

5 Vi) + Vil0)} =

where Vie(r) 4 Vi (r) is the electrostatic potential with a compensating background charge,

and Vg.(r) is the correction for finite charge systems. V. (r) in the range of 0 < z < L, is
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given by

AQ
SL.

Vere(r) = (2% +22)2) + C, (s-29)

where C' and an arbitrary constant, 0 < z < L, is the range of the simulation box along the
z-direction, SL, is the cell volume, and z{, is a constant position parameter used to define
a common reference point for the electrostatic potential. z{ is defined as z, = z.f — L./2,
where L. /2 is half the box length and the electrostatic potential has the reference value of 0
at zer; thus, 2{ can be regarded as the central position of the charged layer (further details

of 2z}, and z.¢ are given below). AQ in Eq. (s-29) is the total charge of the system given by
AQ = / { )+ Z d(r — Tpue) nuc(r)} dr. (s-30)

FE is then given by

nuc

Ees = /% {Vnu0<r> + f/h<r> + ‘/crc( } ' { + Z 5 I'nuc nuc(r)} dr
- —OAQ — = Z an— (s-31)

nuc

Because of the periodic boundary condition, the calculated internal energy Fegca is not Feg

and includes the contribution of the uniform background charge,

Eescal = /%{ nuc "‘Vh } { "‘25 I'nuc nuc(r) ?IC;)} r

nuc

+ CAQ _ = Z i (5-32)

nuc
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Therefore, Fesa should be corrected to obtain E.s by adding the following term FE.;:

nuc

[ 5 et + T } - S (-33)

1
Ecor == / §ch { + Z 5 rnuc nuC( )} dr

The C dependence in Eq. (s-31) is canceled out by the corresponding term in the solvation

free energy (Eq. (s-10)),

Ap = Z P~y / {h(r } O (- {c quC} + %hy(r) {c;(r) - ﬁqWC} dr
ZJ% / 5 {020} O (=hy(r)) = ¢ (r) + %hq(r)dy(r)dr

1
—EOAQ, (8_34)
where ¢, (r) is rewritten as ¢/ (r) — 8¢,C, and the electroneutrality of the total system,
AQ + Z Gy Py / h,(r)dr =0, (s-35)
v

is applied. The last term of Eq. (s-34) is canceled out by the corresponding term in Eq.
(s-31). Therefore, the total free energy does not depends on the parameter C'. An analogous
cancellation is satisfied in the effective screening medium (ESM)-RISM method. 2

In the practical computation, the parameter C'is defined so that the electrostatic potential
generated by the charged layer is 0 at the reference position z.. The total electrostatic
potential shift by the charged layer is proportional to half of the box length, L,/2. Thus,
the box length determines the distance between the reference position z.s and the charged
layer position (zg and z;). Therefore, the values of zy, 2{, and z.¢ can be rationally defined.
For example, in this study, zo and z{, were set to 79 A because the surface Pt layer is at z =
79 A, and the box length is 144 A. Then, the reference position should be defined as zef =
79A —144/2 A =7 A
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When the distance between the reference position and the charged layer position is fixed,
changing their positions results in dipolar electrostatic potential shift. As the positions of
2o and z{, are apart from the real central position of the charged layer, the artificial dipolar
interaction contributes to the total energy. However, the artificial interaction becomes small
as the box size increases, and thus, has a minor contribution to the total energy when the
box size is sufficiently large. Indeed, it is included in our case study.

13,14 would be also

Another correction method such as the Lagrange multiplier technique
used for the SALMON program. However, the present equation is derived by simply rewriting
the equation of the total energy for the semi-infinite electrode system. Indeed, the uniform
background correction is only made to the total energy, not to the Kohn-Sham equation.
Accordingly, the corrections have no effect on the wave function and liquid structure. There-

fore, we selected the uniform background correction because its simplicity enables to retain

unchanged the original part of the SALMON program.
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S2 Standard Hydrogen Electrode Potential

The calculated reaction free energy of 2H;0" + 2e~ — 2H,O + H, in 1.0 M HCIO,4 aque-
ous solution is —5.40 eV, from which the standard hydrogen electrode (SHE) potential was
given as 5.40 V in this study. The calculated SHE potential is slightly higher than the ex-
perimental estimation of 4.44 V. This is simply due to the definition of the potential. To
be precise, the computational SHE was different from the true SHE because of the water-
vacuum surface potential y.1%1” The SHE value references the absolute potential against the
vacuum while we evaluated the value against the solution. Therefore, the computational
SHE value is different because of the water-vacuum surface potential, which was reported to
be 1.1-1.4V.1® The computed SHE becomes in closer agreement with experimental values by
considering the surface potential. The contribution of y is cancelled out in the evaluation of
the relative free energy as we also did not correct the electrode potential using y.'° In fact,
using this computational SHE value, the pzc of Pty.q surrounded by 1.0 M HCIO, aqueous
solution was calculated to be 0.53 V vs. SHE, which are qualitatively in agreement with
previous experimental and theoretical values for a Pt electrode surrounded by an aqueous
solution (0.23-0.56 V vs. SHE or the normal hydrogen electrode potential (NHE)).1820-25
The calculated reaction free energy of 4H;0" + Oy + 4e~ — 6H,O at the computational
SHE is 2.55 eV, which is also in agreement with the experimental value of 2.46 ¢V.26 The
error cancellation contributes to the accordance of the reaction free energy. The water for-
mation energy is underestimated by ~0.2 eV per HoO molecule using the PBE functional.?”
Meanwhile, the thermodynamic corrections were not applied in this study, leading to the
overestimation of the reaction energy of Hy + 1/2 Oy — H,0 by ~0.3 eV.?® Consequently,

these opposing errors effectively cancel each other out.
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S3 Free Energy Calculation of Charged Molecule

In Sec. S2, we utilized the standard 3D-RISM-SCF method for H,O and H3O™" under the
periodic boundary condition, where the finite charge correction was not applied. The energy
error for a charged molecule is approximately inversely proportional to the box length, Ly,
when the periodic boundary condition is applied and the box shape is cubic.??* In Figure

S1, Ege and Ap of H3OT are plotted against the inverse box size, Lgolx, where the box

3
box

size was set to Ly _ and the box has the cubic shape. FEg. and Ay have the negative and

—1
box’

almost canceled out with each other. This is reasonable because the 3D-RISM-SCF method

positive slopes with respect to L respectively. Their dependences on the box size are
is based on the grand canonical framework and thus the total system consisting of the solute
and solvent is charge neutral. The y-intercepts for F.. and Ay, which correspond to their
limiting values at Lo, — 00, are estimated to be —475.11 eV and —3.11 eV using the least
square fitting. The free energy at Ly, — 00 is then estimated to be —478.23 eV, which is
only 0.03 eV smaller than the result of Ly = 40 A (L = 0.025 A=) used in this study.

Figure S2 presents the 3D density distributions and their corresponding cross sections
for the O site of HoO (Oy,), O site of H3OT (O,), and O site of ClO; (O,) around HzO"
when the box size is Lpox = 40 A. The cross sections are obtained by cutting through the O
atom position of H3O1. As seen from Figure S2, the distributions converged to the average

value of 1, indicating that the box size is sufficiently large.
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Figure S1: Dependence on the inverse box size Lgolx for the free energy of H3O" in 1.0 M
HClO4 aqueous solution.
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Figure S2: 3D density distributions and their cross sections of 3D density distributions of
the HCIO4 aqueous solution around H;O™T for (a, b) Oy, (¢, d) O, and (e, f) O,. The
distribution less than 0.001 is not shown in the cross sections for the visibility.

S16



S4 Dependence of Free Energy Profile on Concentra-
tion

Figure S3 shows the free energy profiles using 1.0 M and 0.2 M HCIO4 aqueous solution.
The result for the 1.0 M solution is the same as that shown in the main manuscript. We
corrected the free energy of H3O" by adding the entropic contribution depending on the
concentration, kpTIn[H307].?8 Here, the solvation free energies of HoO and HzO™ in the
0.2 M homogeneous solution were assumed to be the same as those in the 1.0 M solution
because we focused on the EDL structure change depending on the concentration. The
present result shows that the difference in the energy profile at the pzc between the 0.2 M
solution and the 1.0 M solution is primarily due to variation in the electrode potential and
the proton or [H;O™] concentration, kgTIn[H;07]. The difference in kgTIn[H;0"] of the 0.2
M solution from that of the 1.0 M solution is 0.08 eV for the Pt,,.q and Pt-O,4 states and
0.04 eV for the Pt-OH,q states, respectively. The electrode potentials at the pzc are 0.53
V for 1.0 M solution and 0.62 V for 0.2 M solution, respectively. Consequently, the energy
difference owing to the electrode potential is 0.18 eV for the Pt,,.q and Pt-O,q4 states and
0.09 eV for the Pt-OH,q state, respectively. Therefore, the differences other than the [H3OV]
concentration and the electrode potential contribute to the stability only by 0.03 eV for the
Pt-O,q state and 0.05 eV for the Pt-OH,4 state at the pzc.

The energy differences from the pzc to 0.90 V (depicted by the dark blue-red arrows in
Fig. S3) are 0.55 eV for the Pt-O,4 state and 0.30 eV for the Pt-OH,q4 state, when the 0.2 M
solution was used. These values are also in agreement with the simple estimation based on
the classical electrochemistry used in the CHE model, AQot - Upot (see the main manuscript
for details), 0.56 eV for the Pt-O,4 states and 0.28 eV for the Pt-OH,q state. These results
indicate that the EDL formation has a negligible influence on Pt-O,q and Pt-OH,q, when

the 0.2 M solution is used.
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Figure S3: Free energy profiles of the oxygen reduction reaction at the potential of zero
charge (pzc) of Ptyoaq and at 0.90 V relative to the standard hydrogen electrode potential
(SHE).
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S5 Solvation Structure

Figures S4 and S5 show the average density distributions of the 1.0 M HCIO4 solution along
the z-axis perpendicular to the Pt surface at 0.53 V (the pzc of Ptyeaq) and 0.90 V relative
to the standard hydrogen electrode (SHE) potential. The results for the O site of C10; (O,)
and H site of H3O" (H.) are shown in Figure S4, and those for the O and H sites of HyO
(Oy and Hy,) are shown in Figure S5.

To compare the magnitudes of the ClO; and H3O™ densities around the adsorbates, the
3D density distribution at 0.90 V using a different threshold for g(r) from that in the main
manuscript is shown in Figure S6. In addition, the cross sections of 3D density distributions
of Cl,, O,, and O, at 0.90 V are shown in Figure S7. Figures S8 and S9 shows the 3D
density distribution of O of H,O, H of H,O, and H of H30™" at the PZC potential and 0.8

V, respectively.
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Figure S4: Density distributions of ions in the HC1O4 aqueous solution perpendicular to the
Pt surface, g(z) = < [ g(r)dazdy, near Ptygq (black), Pt-Ouq (blue), and Pt-OH,q (red) at
(a) 0.53 V and (b) 0.90 V.
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Figure S5: Density distributions of water in the HC1O4 aqueous solution perpendicular to
the Pt surface, g(z) = ¢ [ g(r)dady, near Ptyoaa (black), Pt-Oaq (blue), and Pt-OH,q (red)
at (a) 0.53 V and (b) 0.90 V.
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Figure S6: 3D density distributions of the HCIO4 aqueous solution for Pt-O,q (left) and
Pt-OH,q (right).
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Figure S7: Cross section of 3D density distributions of the HCIO, aqueous solution for Pt-
O.q (left) and Pt-OH,q (right) at 0.90 V of Cl, (a and b), O, (c and d) and O, (e and

£).
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Figure S8: 3D density distributions of the HCIO4 aqueous solution for Pt-O,q (left) and
Pt-OH,q (right) at the PZC potential.

524



Pt-O_4 Pt-OH_4
O of H,0 (g(r) > 2.5)
(a) (b)

H of H,O (g(r) > 2.5)
(c) (d)

H of H;O* (g(r) > 2.5)
(e) (f)

Figure S9: 3D density distributions of the HCIO4 aqueous solution for Pt-O,q (left) and
Pt-OH,q (right) at 0.8 V.
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S6 Solvation Structure of 0.2 M HCIO, solution

Figure S10 shows the average density distributions of the 0.2 M HCIO,4 solution along the
z-axis perpendicular to the Pt surface. The density distribution of ions becomes broaden
along the z-direction relative to that for the 1.0 M solution, indicating that the short-
range interaction between the adsorbates and solution becomes weaker as the concentration
decreases. It is noted that the value of the distribution function is the ratio relative to the
average concentration. For example, when the value of the distribution function is the same,

the number of the ions of 0.2 M solution is smaller by 5 times than that of the 1.0 M solution.
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Figure S10: Density distributions of the 0.2 M HCIO,4 aqueous solution perpendicular to the
Pt surface, g(z) = 5 [ g(r)dazdy, near Pty (black), Pt-Ouq (blue), and Pt-OH,q (red) at
0.90 V.
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S7 Electrostatic Potential Distribution

Figure S11 shows the cross section of the change in the electrostatic potential (Vis(r) +
Vi(r) + Vior(r)) due to a 0.37 V increase in the electric potential when 1.0 M HCIO, aqueous
solution is used. The range of the color gradient is set to be smaller than that given in the

main manuscript.

(a) I:)tnoad (b) I:)t'oad (C) I:)J['OHad

>0.15V

<=-0.15V

X

Figure S11: Cross section of the change in the electrostatic potential due to a 0.37 V increase
relative to the potential of zero charge (pzc) for (a) Ptuoad, (b) Pt-O,q, and (c) Pt-OHuq
surrounded by 1.0 M HCIO, solution. The color gradient ranges from -0.15 (blue) to +0.15
V (red). The position of the adsorbed O atom is marked with “+4”.
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