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S1 Theoretical Method

S1.1 Three-Dimensional Reference Interaction Site Model Self-

Consistent Field (3D-RISM-SCF) Theory

As 3D-RISM-SCF has been described in detail in the literature,1 only a brief summary of

the framework is provided here. The equations are given in atomic units, unless otherwise

stated. From the variational principle of free energy, the Kohn–Sham equation is obtained

as2

[
−1

2
∇2 + Vps + Vh + Vxc + Vsol

]
ψi(r) = ϵiψi(r), (s-1)

where ψi is the Kohn–Sham orbital, Vps is the nuclear attraction potential, Vh is the Hartree

potential, Vxc is the exchange-correlation potential, and Vsol is the electrostatic potential

generated by the solvent. The electron density ρU is given by

ρU(r) =
∑
i

fi|ψi(r)|2, (s-2)

where fi is the occupation number of the ith orbital given by the Fermi–Dirac function,3

f(ϵ) =
2

1 + exp
(

ϵi−µe

kBT

) , (s-3)

where ϵi is the energy and µe is the chemical potential of an electron, i.e., Fermi level.

In this equation, a closed-shell electronic structure is assumed. The electric potential of

electrochemical systems is determined using µe in this study.

The 3D-RISM equation is given by2,4

hγ(r) = cα(r) ∗
{
ωVV
αγ (r) + ρVαh

VV
αγ (r)

}
, (s-4)

where “∗’’denotes a convolution integral, ρVα is the average number density of the αth solvent
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site, α and γ denote the atomic sites of solvent, ωVV
αγ (k) is the intramolecular correlation

function between the αth and γth solvent sites, and hγ(r) and cα(r) are the total and direct

correlation functionals, respectively. The superscript VV symbolizes the solvent–solvent

pair correlation function. The density distribution function of the solvent site γ is given by

gγ(r) = hγ(r) + 1. Because Eq. (s-4) has two unknown functions, h and c, the Kovalenko–

Hirata closure,2

hγ(r) + 1 =

 exp {χγ(r)} (χγ ≤ 0),

1 + χγ(r) (χγ > 0),
(s-5)

χγ(r) = −βuγ(r) + hγ(r)− cγ(r), (s-6)

was used in this study. In Eq. (s-6), β is equal to 1/kBT and uγ is the site–site interaction

potential given as the sum of the electrostatic and Lennard–Jones (LJ) potentials,

uγ(r) = qVγ {Vnuc(r)− Vh(r)}+
∑
j

4εjγ

{(
σjγ

|r−Rj|

)12

−
(

σjγ
|r−Rj|

)6
}
, (s-7)

where σjγ and εjγ are parameters of the LJ potential defined by the jth and γth atomic

cites, qVγ is the charge on the γth solvent site, Rj is the jth solute atomic site, and Vnuc is

the electrostatic potential generated by the nuclear charges on the solute. Vh(r), which is

originally used as the interaction potential in Eq. (s-1) by negatively charged electrons, has

a negative sign.

The free energy of the electrochemical system is defined using the grand potential Ω given

as

Ω = Ees +∆µ− µeNe, (s-8)

where Ees is the internal energy of the electrode system calculated using the density func-

tional theory (DFT) method, ∆µ is the solvation free energy, and Ne is the total number of
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electrons. ∆µ is given by2

∆µ =
∑
γ

ρVγ
β

∫
1

2
{hγ(r)}2Θ(−hγ(r))− cγ(r)−

1

2
hγ(r)cγ(r)dr, (s-9)

where Θ(x) is the Heaviside step function. The electrostatic potential generated by the

solvent is given by

∇2Vsol(r) = −4π

{∑
γ

ρVγ (−qVγ )gγ(r)

}
, (s-10)

and applied in Eq. (s-1). In Eq. (s-10), qVγ is assigned a negative sign to account for

interactions with electrons.

The finite charge correction is not needed to solve Eq. (s-1) because the entire system

consisting of a solute (i.e., the electrode and reactant) and solvent is charge neutral. How-

ever, Vnuc(r) − Vh(r) in Eq. (s-7) represents the electrostatic potential generated by the

charged solute. Thus, the formula described in the next section is adopted for the 3D-RISM

calculations included in the 3D-RISM-SCF method.

S1.2 Theoretical Formula for Charged Materials

We have presented a theoretical formula to determine the solvation structure around a

charged material comprising an electrode in our previous study.5 This formula is based

on that proposed by Vyalov et. al.,6 which includes the contribution of an infinitely thin

charged layer to the solvation structure using an analytical framework, thereupon the 3D-

RISM calculation (i.e., without DFT calculation) of a charged slab can be performed. An

infinitely thin charged layer is not sufficiently suitable for 3D-RISM-SCF because the elec-

trons are spatially distributed. Therefore, we consider a charged slab with a finite thickness,

where the slab surface is parallel to the x-y plane. Its electrostatic potential interaction with
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solvent is then given by

ulγ(z) = qVγ v
σL(z). (s-11)

vσL(z) is the electrostatic potential generated by the charged slab with a surface charge

density σL,
7

vσL(z) = −2π ×


σL

L
(z − z0)

2 + σL

4
L+ C (|z − z0| ≤ L

2
)

σ|z − z0|+ C (|z − z0| > L
2
),

(s-12)

where L and z0 are the thickness and center position of the charged slab, respectively.

The results obtained are independent of the arbitrary parameter C because of the charge

neutrality of the bulk homogeneous solvent. Therefore, C is omitted in this section.

The direct correlation function is partitioned as

cγ(r) = clγ(r) + csγ(r), (s-13)

where clγ(r) is the long-range electrostatic interaction given by

clγ(r) = −βulγ(z), (s-14)

and csγ(r) is the short-range interaction. The 3D-RISM equation can then be rewritten as

hγ(r) =
{
clα(r) + csα(r)

}
∗
{
ωVV
αγ (r) + ρVαh

VV
αγ (r)

}
. (s-15)

Thus, the Kovalenko–Hirata closure becomes

hγ(r) + 1 =

 exp {χγ(r)} (χγ ≤ 0),

1 + χγ(r) (χγ > 0),
(s-16)

χγ(r) = −βusγ(r) + hγ(r)− csγ(r). (s-17)
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usγ is the sum of the Lennard–Jones and short-range electrostatic interactions,

usγ(r) = qVγ {Vnuc(r)− V ′
h(r)}+

∑
j

4εjγ

{(
σjγ

|r−Rj|

)12

−
(

σjγ
|r−Rj|

)6
}
, (s-18)

where V ′
h is calculated from the difference between the electron density and slab charge per

unit thickness σL/L,

∇2V ′
h(r) =

 −4π
{
ρU(r)−

(−σL

L

)}
(|z − z0| ≤ L

2
),

−4πρU(r) (|z − z0| > L
2
).

(s-19)

σL has a negative sign because electrons have a negative charge. Note that the sum of the

potentials, ulγ(r) + usγ(r), reproduces the total potential uγ in Eq (s-7).

The long-range part of the total correlation function is expressed as6

hlγ(r) = clα(r) ∗
{
ωVV
αγ (r) + ρVαh

VV
αγ (r)

}
= −β

∑
α

ρVαq
V
α

∫
R

hVV
γα (|r− r′|) {vσ(z′)− vσ(z)} dr′

−β
∑

α(α̸=γ)

∫
R

δ(|r− r′| − lαγ)

4πl2αγ
vσ(z′)dr′ − vσ(z), (s-20)

where lαγ is the intramolecular distance between α and γ sites, R indicates that integration

is performed over the total space, and the electroneutrality condition of the bulk solvent,

∑
α

qVα

∫
R

ωVV
αγ (r) + ρVαh

VV
αγ (r)dr = 0, (s-21)

is applied. Because of the translational symmetry along the x and y directions of the flat

charged slab, hlγ(r) in Eq. (s-20) depends only on the z coordinate (i.e., independent of the

x and y coordinates). The third line of Eq. (s-20) can be calculated using the following
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equations:

∫
R

δ(|r− r′| − lαγ)

4πl2αγ
|z′ − z0|dr′

=

 |z − z0| for |z − z0| > lαγ,

1
2lαγ

{
(z − z0)

2 + l2αγ
}

for |z − z0| ≤ lαγ,
(s-22)

and

∫
R(|z′−z0|≤L/2)

δ(|r− r′| − lαγ)

4πl2αγ

{
(z′ − z0)

2 − |z′ − z0|
}
dr′

=
1

2lαγ

∫
|z′−z0|≤L/2

Θ(lαγ − |z − z′|) ·
{
(z′ − z0)

2 − |z′ − z0|
}
dz′. (s-23)

R(|z′ − z0| ≤ L/2) in the first line of Eq. (s-23) indicates that integration is performed

over the space |z′ − z0| ≤ L/2, and cylindrical coordinates (ρ′ =
√
x′2 + y′2) are introduced.

Θ(lαγ − |z − z′|) is the Heaviside step function given by

Θ(lαγ − |z − z′|) =

 0 for lαγ − |z − z′| < 0,

1 for lαγ − |z − z′| ≥ 0.
(s-24)

The one-dimensional integral along the z′-direction on the right-hand side of Eq. (s-23)

can be solved numerically using fine grid points because the computational cost is low.

Therefore, the computational cost to solve Eq. (s-20) is mainly determined by the second

line. Fortunately, the second line can be rewritten as

−β
∑
α

ρVαq
V
α

∫
R

dr′hVV
γα (|r− r′|) {vσ(z′)− vσ(z)}

= −β
∑
α

ρVαq
V
α

∫
z′

{∫
x′,y′

hVV
γα (|r− r′|)dx′dy′

}
{vσ(z′)− vσ(z)} dz′. (s-25)

The integration over x′ and y′ in Eq. (s-25) is needed to be calculated only once before

the iterative DFT and 3D-RISM calculations because of its dependence only on hVV
γα , that

is, the total correlation function of the homogeneous bulk solvent. Therefore, only the
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integration over z′ is needed to be performed during the 3D-RISM-SCF procedure, and the

computational cost is almost negligible.

In the present approach, the DFT and 3D-RISM calculations can be directly connected

in the sense that a unified grid-point basis set is used. The computational cost for the

calculation of this study increases significantly because a large box is required to calculate

the electric double layer. Thus, the SALMON program is highly suitable for this study owing

to its applicability to large materials.

Dipole correction8 is not used in this study because it causes only a small variation when

the vacuum region is very large, as is the case in this study. Using the present approach,

dipole correction can be applied by adding two charged slabs, whose electrostatic potential

is defined by Eq. (s-12), to describe the potential shifts due to dipolar polarization.

In this study, the thickness L of the charge slab was set to 0.336 Å, and the charged

slab was placed in the position of the surface Pt atom layer. In calculating hlγ(z) using Eq.

(s-20), the contribution of the long-distance area depends on numerical errors due to the

convergence threshold and fast Fourier transform procedure. Thus, hVV
γα values less than 1

× 10−10 were rounded off during integration.

Our theoretical formula was derived simply by rewriting the original 3D-RISM equation,

that is, no additional approximation was incorporated in our method as compared to the

original 3D-RISM method. Therefore, numerous benchmarking results using the original

3D-RISM method is transferable for checking the validity of our method.

In our method, the electrode potential is given as the difference between the Fermi level

and the computed SHE potential. To achieve the convergence of the chemical potential of

electrons, we used the procedure proposed in a previous study.9 Once the chemical potential

is specified, we performed the constant-Ne calculations by varying Ne many times until

the specified chemical potential was obtained. The converged Fermi level was obtained by

repeatedly performing the linear extrapolation where the system charge was treated as a

function of the Fermi level. Through repeated calculations, we confirmed that the calculated

Fermi level is a monotonic function of the system charge. More sophisticated algorithms
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have been proposed;10 however, further improvement to the algorithm is beyond the scope

of this study.

S1.3 Formula for Energy Calculation

The Kohn–Sham equation is solved in the same manner as that for conventional neutral

systems because the entire system consisting of a solute (i.e., the electrode and reactant)

and solvent is charge neutral. However, there are additional considerations when calculating

Eele because the charge neutrality of the total system consisting of a solute and solvent is

not useful to calculate Eele given by

Eele =
∑
i

〈
ψi

∣∣1
2
∇2 + Vnuc +

1
2
Vh + Vxc

∣∣ψi

〉
+
∑
nuc

Vnuc(rnuc)Znuc(rnuc). (s-26)

The second term is the nuclear–nuclear electrostatic interaction energy. In this study, the

total electrostatic interaction energy Ees is rewritten as

Ees =
∑
i

〈
ψi

∣∣Vnuc + 1
2
Vh

∣∣ψi

〉
+
∑
nuc

Vnuc(rnuc)Znuc(rnuc)

=

∫
1

2
{Vnuc(r) + Vh(r)} ·

{
ρ(r) +

∑
nuc

δ(r− rnuc)Znuc(r)

}
dr− 1

2

∑
nuc

Z2
nuc

α√
π
,

(s-27)

where the Ewald method is applied using the parameter α.11 We further introduce a uniform

background charge correction7

1

2
{Vnuc(r) + Vh(r)} =

1

2

{
Ṽnuc(r) + Ṽh(r) + Vcrc(r)

}
, (s-28)

where Ṽnuc(r) + Ṽh(r) is the electrostatic potential with a compensating background charge,

and Vcrc(r) is the correction for finite charge systems. Vcrc(r) in the range of 0 ≤ z ≤ Lz is
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given by

Vcrc(r) = −2π
∆Q

SLz

(
z2 + 2z′0z

)
+ C, (s-29)

where C and an arbitrary constant, 0 ≤ z ≤ Lz is the range of the simulation box along the

z-direction, SLz is the cell volume, and z′0 is a constant position parameter used to define

a common reference point for the electrostatic potential. z′0 is defined as z′0 = zref − Lz/2,

where Lz/2 is half the box length and the electrostatic potential has the reference value of 0

at zref ; thus, z
′
0 can be regarded as the central position of the charged layer (further details

of z′0 and zref are given below). ∆Q in Eq. (s-29) is the total charge of the system given by

∆Q =

∫ {
ρ(r) +

∑
nuc

δ(r− rnuc)Znuc(r)

}
dr. (s-30)

Ees is then given by

Ees =

∫
1

2

{
Ṽnuc(r) + Ṽh(r) + Vcrc(r)

}
·

{
ρ(r) +

∑
nuc

δ(r− rnuc)Znuc(r)

}
dr

+
1

2
C∆Q− 1

2

∑
nuc

Z2
nuc

α√
π
. (s-31)

Because of the periodic boundary condition, the calculated internal energy Eescal is not Ees

and includes the contribution of the uniform background charge,

Eescal =

∫
1

2

{
Ṽnuc(r) + Ṽh(r)

}
·

{
ρ(r) +

∑
nuc

δ(r− rnuc)Znuc(r)−
∆Q

SLz

}
dr

+
1

2
C∆Q− 1

2

∑
nuc

Z2
nuc

α√
π
. (s-32)
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Therefore, Eescal should be corrected to obtain Ees by adding the following term Ecor:

Ecor =

∫
1

2
Vcrc(r) ·

{
ρ(r) +

∑
nuc

δ(r− rnuc)Znuc(r)

}
dr

+

∫
1

2

{
Ṽnuc(r) + Ṽh(r)

}
· ∆Q
SLz

dr. (s-33)

The C dependence in Eq. (s-31) is canceled out by the corresponding term in the solvation

free energy (Eq. (s-10)),

∆µ =
∑
γ

ργ
β

∫
1

2
{hγ(r)}2Θ(−hγ(r))−

{
c′γ(r)− βqγC

}
+

1

2
hγ(r)

{
c′γ(r)− βqγC

}
dr

=
∑
γ

ργ
β

∫
1

2
{hγ(r)}2Θ(−hγ(r))− c′γ(r) +

1

2
hγ(r)c

′
γ(r)dr

−1

2
C∆Q, (s-34)

where cγ(r) is rewritten as c′γ(r)− βqγC, and the electroneutrality of the total system,

∆Q+
∑
γ

qγργ

∫
hγ(r)dr = 0, (s-35)

is applied. The last term of Eq. (s-34) is canceled out by the corresponding term in Eq.

(s-31). Therefore, the total free energy does not depends on the parameter C. An analogous

cancellation is satisfied in the effective screening medium (ESM)-RISM method.12

In the practical computation, the parameter C is defined so that the electrostatic potential

generated by the charged layer is 0 at the reference position zref . The total electrostatic

potential shift by the charged layer is proportional to half of the box length, Lz/2. Thus,

the box length determines the distance between the reference position zref and the charged

layer position (z0 and z′0). Therefore, the values of z0, z
′
0, and zref can be rationally defined.

For example, in this study, z0 and z
′
0 were set to 79 Å because the surface Pt layer is at z =

79 Å, and the box length is 144 Å. Then, the reference position should be defined as zref ≡

79 Å − 144/2 Å = 7 Å.
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When the distance between the reference position and the charged layer position is fixed,

changing their positions results in dipolar electrostatic potential shift. As the positions of

z0 and z′0 are apart from the real central position of the charged layer, the artificial dipolar

interaction contributes to the total energy. However, the artificial interaction becomes small

as the box size increases, and thus, has a minor contribution to the total energy when the

box size is sufficiently large. Indeed, it is included in our case study.

Another correction method such as the Lagrange multiplier technique13,14 would be also

used for the SALMON program. However, the present equation is derived by simply rewriting

the equation of the total energy for the semi-infinite electrode system. Indeed, the uniform

background correction is only made to the total energy, not to the Kohn-Sham equation.

Accordingly, the corrections have no effect on the wave function and liquid structure. There-

fore, we selected the uniform background correction because its simplicity enables to retain

unchanged the original part of the SALMON program.
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S2 Standard Hydrogen Electrode Potential

The calculated reaction free energy of 2H3O
+ + 2e− → 2H2O + H2 in 1.0 M HClO4 aque-

ous solution is −5.40 eV, from which the standard hydrogen electrode (SHE) potential was

given as 5.40 V in this study. The calculated SHE potential is slightly higher than the ex-

perimental estimation of 4.44 V.15 This is simply due to the definition of the potential. To

be precise, the computational SHE was different from the true SHE because of the water-

vacuum surface potential χ.16,17 The SHE value references the absolute potential against the

vacuum while we evaluated the value against the solution. Therefore, the computational

SHE value is different because of the water-vacuum surface potential, which was reported to

be 1.1–1.4V.18 The computed SHE becomes in closer agreement with experimental values by

considering the surface potential. The contribution of χ is cancelled out in the evaluation of

the relative free energy as we also did not correct the electrode potential using χ.19 In fact,

using this computational SHE value, the pzc of Ptnoad surrounded by 1.0 M HClO4 aqueous

solution was calculated to be 0.53 V vs. SHE, which are qualitatively in agreement with

previous experimental and theoretical values for a Pt electrode surrounded by an aqueous

solution (0.23–0.56 V vs. SHE or the normal hydrogen electrode potential (NHE)).18,20–25

The calculated reaction free energy of 4H3O
+ + O2 + 4e− → 6H2O at the computational

SHE is 2.55 eV, which is also in agreement with the experimental value of 2.46 eV.26 The

error cancellation contributes to the accordance of the reaction free energy. The water for-

mation energy is underestimated by ∼0.2 eV per H2O molecule using the PBE functional.27

Meanwhile, the thermodynamic corrections were not applied in this study, leading to the

overestimation of the reaction energy of H2 + 1/2 O2 → H2O by ∼0.3 eV.28 Consequently,

these opposing errors effectively cancel each other out.
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S3 Free Energy Calculation of Charged Molecule

In Sec. S2, we utilized the standard 3D-RISM-SCF method for H2O and H3O
+ under the

periodic boundary condition, where the finite charge correction was not applied. The energy

error for a charged molecule is approximately inversely proportional to the box length, Lbox,

when the periodic boundary condition is applied and the box shape is cubic.29,30 In Figure

S1, Eele and ∆µ of H3O
+ are plotted against the inverse box size, L−1

box, where the box

size was set to L3
box and the box has the cubic shape. Eele and ∆µ have the negative and

positive slopes with respect to L−1
box, respectively. Their dependences on the box size are

almost canceled out with each other. This is reasonable because the 3D-RISM-SCF method

is based on the grand canonical framework and thus the total system consisting of the solute

and solvent is charge neutral. The y-intercepts for Eele and ∆µ, which correspond to their

limiting values at Lbox → ∞, are estimated to be −475.11 eV and −3.11 eV using the least

square fitting. The free energy at Lbox → ∞ is then estimated to be −478.23 eV, which is

only 0.03 eV smaller than the result of Lbox = 40 Å (L−1
box = 0.025 Å−1) used in this study.

Figure S2 presents the 3D density distributions and their corresponding cross sections

for the O site of H2O (Ow), O site of H3O
+ (Oc), and O site of ClO−

4 (Oa) around H3O
+

when the box size is Lbox = 40 Å. The cross sections are obtained by cutting through the O

atom position of H3O
+. As seen from Figure S2, the distributions converged to the average

value of 1, indicating that the box size is sufficiently large.
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Figure S1: Dependence on the inverse box size L−1
box for the free energy of H3O

+ in 1.0 M
HClO4 aqueous solution.
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Figure S2: 3D density distributions and their cross sections of 3D density distributions of
the HClO4 aqueous solution around H3O

+ for (a, b) Ow, (c, d) Oc, and (e, f) Oa. The
distribution less than 0.001 is not shown in the cross sections for the visibility.
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S4 Dependence of Free Energy Profile on Concentra-

tion

Figure S3 shows the free energy profiles using 1.0 M and 0.2 M HClO4 aqueous solution.

The result for the 1.0 M solution is the same as that shown in the main manuscript. We

corrected the free energy of H3O
+ by adding the entropic contribution depending on the

concentration, kBT ln[H3O
+].28 Here, the solvation free energies of H2O and H3O

+ in the

0.2 M homogeneous solution were assumed to be the same as those in the 1.0 M solution

because we focused on the EDL structure change depending on the concentration. The

present result shows that the difference in the energy profile at the pzc between the 0.2 M

solution and the 1.0 M solution is primarily due to variation in the electrode potential and

the proton or [H3O
+] concentration, kBT ln[H3O

+]. The difference in kBT ln[H3O
+] of the 0.2

M solution from that of the 1.0 M solution is 0.08 eV for the Ptnoad and Pt-Oad states and

0.04 eV for the Pt-OHad states, respectively. The electrode potentials at the pzc are 0.53

V for 1.0 M solution and 0.62 V for 0.2 M solution, respectively. Consequently, the energy

difference owing to the electrode potential is 0.18 eV for the Ptnoad and Pt-Oad states and

0.09 eV for the Pt-OHad state, respectively. Therefore, the differences other than the [H3O
+]

concentration and the electrode potential contribute to the stability only by 0.03 eV for the

Pt-Oad state and 0.05 eV for the Pt-OHad state at the pzc.

The energy differences from the pzc to 0.90 V (depicted by the dark blue-red arrows in

Fig. S3) are 0.55 eV for the Pt-Oad state and 0.30 eV for the Pt-OHad state, when the 0.2 M

solution was used. These values are also in agreement with the simple estimation based on

the classical electrochemistry used in the CHE model, ∆Qtot ·Upot (see the main manuscript

for details), 0.56 eV for the Pt-Oad states and 0.28 eV for the Pt-OHad state. These results

indicate that the EDL formation has a negligible influence on Pt-Oad and Pt-OHad, when

the 0.2 M solution is used.
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Figure S3: Free energy profiles of the oxygen reduction reaction at the potential of zero
charge (pzc) of Ptnoad and at 0.90 V relative to the standard hydrogen electrode potential
(SHE).
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S5 Solvation Structure

Figures S4 and S5 show the average density distributions of the 1.0 M HClO4 solution along

the z-axis perpendicular to the Pt surface at 0.53 V (the pzc of Ptnoad) and 0.90 V relative

to the standard hydrogen electrode (SHE) potential. The results for the O site of ClO−
4 (Oa)

and H site of H3O
+ (Hc) are shown in Figure S4, and those for the O and H sites of H2O

(Ow and Hw) are shown in Figure S5.

To compare the magnitudes of the ClO−
4 and H3O

+ densities around the adsorbates, the

3D density distribution at 0.90 V using a different threshold for g(r) from that in the main

manuscript is shown in Figure S6. In addition, the cross sections of 3D density distributions

of Cla, Oa, and Oc at 0.90 V are shown in Figure S7. Figures S8 and S9 shows the 3D

density distribution of O of H2O, H of H2O, and H of H3O
+ at the PZC potential and 0.8

V, respectively.
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Figure S6: 3D density distributions of the HClO4 aqueous solution for Pt-Oad (left) and
Pt-OHad (right).
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Figure S7: Cross section of 3D density distributions of the HClO4 aqueous solution for Pt-
Oad (left) and Pt-OHad (right) at 0.90 V of Cla (a and b), Oa (c and d) and Oc (e and
f).
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Pt-OHad (right) at 0.8 V.
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S6 Solvation Structure of 0.2 M HClO4 solution

Figure S10 shows the average density distributions of the 0.2 M HClO4 solution along the

z-axis perpendicular to the Pt surface. The density distribution of ions becomes broaden

along the z-direction relative to that for the 1.0 M solution, indicating that the short-

range interaction between the adsorbates and solution becomes weaker as the concentration

decreases. It is noted that the value of the distribution function is the ratio relative to the

average concentration. For example, when the value of the distribution function is the same,

the number of the ions of 0.2 M solution is smaller by 5 times than that of the 1.0 M solution.
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S7 Electrostatic Potential Distribution

Figure S11 shows the cross section of the change in the electrostatic potential (Vps(r) +

Vh(r)+Vsol(r)) due to a 0.37 V increase in the electric potential when 1.0 M HClO4 aqueous

solution is used. The range of the color gradient is set to be smaller than that given in the

main manuscript.

z

x

(b) Pt-Oad (c) Pt-OHad(a) Ptnoad

> 0.15 V

< −0.15 V

+ +

Figure S11: Cross section of the change in the electrostatic potential due to a 0.37 V increase
relative to the potential of zero charge (pzc) for (a) Ptnoad, (b) Pt-Oad, and (c) Pt-OHad

surrounded by 1.0 M HClO4 solution. The color gradient ranges from -0.15 (blue) to +0.15
V (red). The position of the adsorbed O atom is marked with “+”.
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