Electronic Supplementary Information

Unveiling intrinsic active sites and pivotal intermediate species in N_2O decomposition over Co_3O_4 -based catalysts

Yihuai Zhang,^{#a} Qi Dong,^{#b} Jianning Zhang,^{ca} Tao Zhang^{*a}, and Junhua Li^d

^a School of Chemistry and Life Resources, Renmin University of China, Beijing,

100872, P. R. China

^b College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China

^c College of Science, China University of Petroleum, Beijing, 102249, P. R. China

^d State Key Joint Laboratory of Environment Simulation and Pollution Control,

School of Environment, Tsinghua University, Beijing, 100084, P. R. China

[#] Y.Z. and Q.D. contributed equally to this work.

* Corresponding Author. E-mail: zhangt@ruc.edu.cn.

Fig. S1 Optimized slab models of (a) the Co_3O_4 (100) surface and (b) Cu^{2+} replaces Co^{2+} sites. Top views of (c) the Co_3O_4 (100) and (d) Cu doped Co_3O_4 (100). Red, blue, gray and orange balls represent O, Co, N and Cu atoms, respectively.

Fig. S2 (a) N₂O decomposition performance of the $Cu_{0.15}CoO_y$ at 400 °C for 12 h; (b) N₂O decomposition performance of the $Cu_{0.15}CoO_y$ after multiple cycles. Reaction conditions: $[N_2O] = 500$ ppm, Ar balance, flow rate = 200 mL min⁻¹, GHSV = 120,000 h⁻¹.

Fig. S3 N_2 adsorption-desorption isotherms of Co-based catalysts.

Fig. S4 HAADF-STEM image and EDS mappings of $Cu_{0.15}CoO_y$ catalyst.

Fig. S5 In situ DRIFTS spectra of N₂O decomposition over (a) Co₃O₄, (b) Cu_{0.05}CoO_y,

(c) $Cu_{0.1}CoO_y$, (d) $Cu_{0.15}CoO_y$, and (e) $Cu_{0.2}CoO_y$ catalysts at 325 °C for 30 min.

Fig. S6. *In situ* DRIFTS spectra spectral evolution of $Cu_{0.15}CoO_y$ catalyst under varied atmospheres at room temperature. N₂O atmosphere: 500 ppm N₂O, balanced with Ar, 50 mL min⁻¹. Ar atmosphere: pure Ar, 50 mL min⁻¹.

As shown in Fig. S6, after stopping the N₂O flow and purging the cell with pure Ar at 50 mL min⁻¹, the characteristic N₂O-related IR bands at 2237 and 2207 cm⁻¹ gradually weakened and completely disappeared after approximately 3 min of Ar purging. Considering that the internal volume of the DRIFTS cell is very small (~3 mL) and the gas flow rate is relatively high (50 mL min⁻¹), gas-phase N₂O should have been flushed out almost immediately. Therefore, the fact that the characteristic bands persisted for some time before disappearing suggests that these bands are mainly associated with surface-adsorbed species rather than free gas-phase N₂O.

Fig. S7 Splitting of adsorbed N_2O on Co_3O_4 (100) and Cu-doped Co_3O_4 (100). Red, blue, gray and orange balls represent O, Co, N and Cu atoms, respectively. The pink dotted circle indicates an oxygen vacancy.

Fig. S8. Bond lengths in transition states.

Mode	Туре	Frequency	Angular	Wavenumbe	Energy
		(THz)	frequency	r	(meV)
			$(2\pi \cdot \text{THz})$	(cm ⁻¹)	
170	f	1.751693	11.006213	58.430195	7.244418
171	f	1.548416	9.728987	51.649613	6.403733
172	f	1.453885	9.135027	48.496373	6.012781
173	f	1.344003	8.444620	44.831113	5.558347
174	f/i	20.040608	125.918855	668.482732	82.881258

Table S1. Frequency values of transition state (TS) over Co_3O_4

Mode	Туре	Frequency	Angular	Wavenumber	Energy
		(THz)	frequency	(cm ⁻¹)	(meV)
			$(2\pi \cdot \text{THz})$		
170	f	1.115155	7.006728	37.197582	4.611910
171	f	0.938572	5.897222	31.307391	3.881620
172	f	0.448436	4.186647	22.226230	2.755700
173	f/i	1.547817	9.725221	51.629619	6.401254
174	f/i	17.879424	112.339732	596.393378	73.943322

Table S2. Frequency values of transition state (TS) over Cu-doped Co_3O_4