Supplementary Information (SI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2025

Supplementary materials

Tuning Ethanol Synthesis Pathways from Syngas: Nanosheet-Structured K-Doped Co-MoS₂ Catalysts and the Role of CVD Sulfidation

Mohamed E. Osman, ^a* Anton S. Konopatsky, ^b Nikita A. Repev, ^{a, c} Dmitry V, Shtansky, ^b Pavel A. Nikulshin, ^d Victor M. Kogan ^a

^a N.D. Zelinsky Institute of Organic Chemistry RAS, Moscow 119991, Russia

^b National University of Science and Technology MISIS, 119049 Moscow, Russia

^c Lomonosov Moscow State University, Moscow 119991, Russia

^d RUDN University, 6 Miklukho-Maklaya St, Moscow, 117198, Russia

<u>*osman@ioc.ac.ru</u>

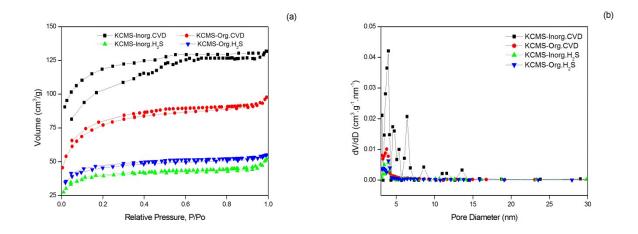


Figure S1. Textural characteristics of sulfided catalysts understudy: (a) N₂-adsorption isotherms;

(b) Pore size distribution

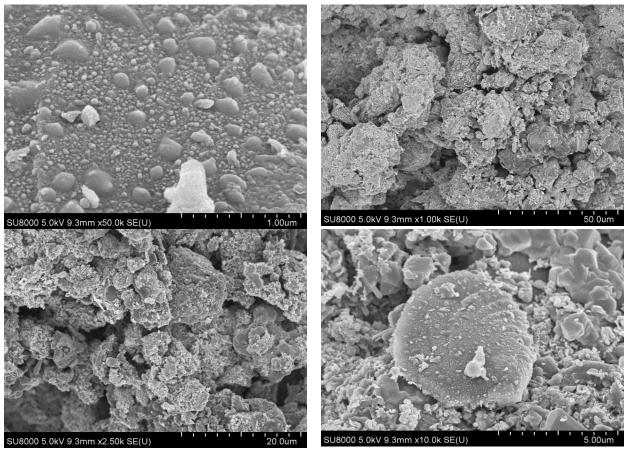


Figure S2. SEM micrographs of AJ-3 activated carbon support

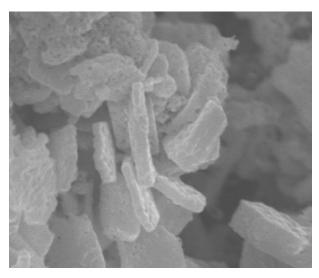


Figure S3. Additional SEM image of KCMS-Inorg.CVD

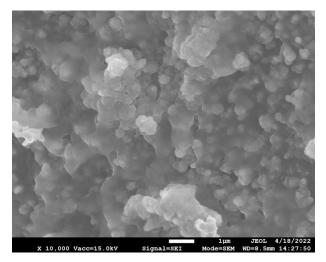
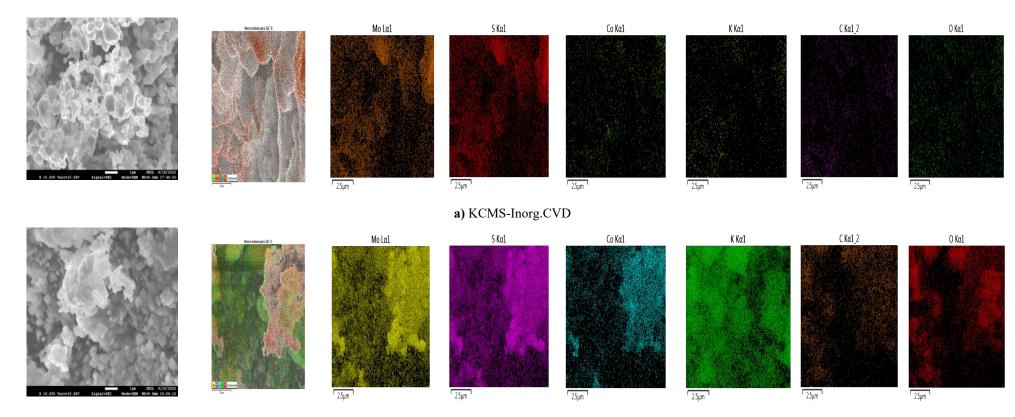
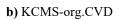
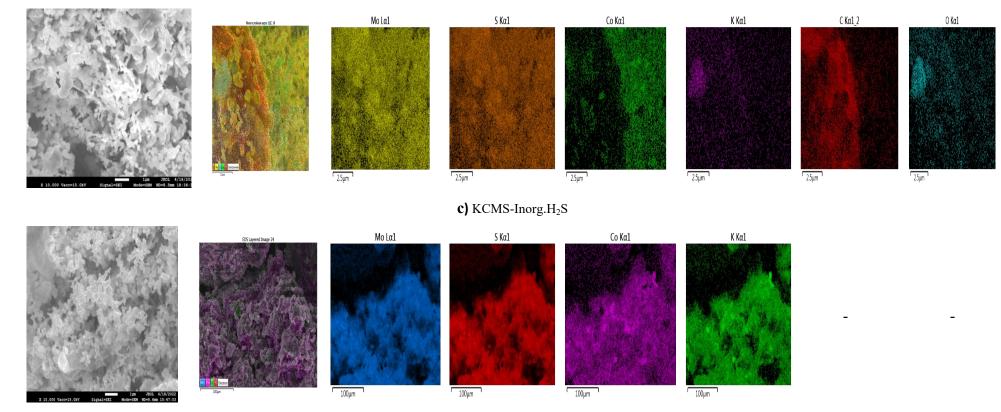
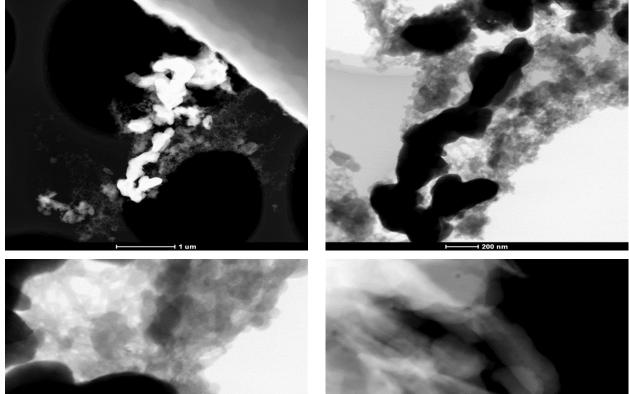
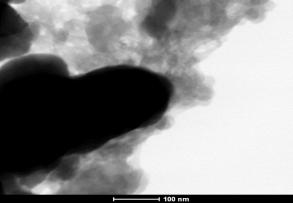
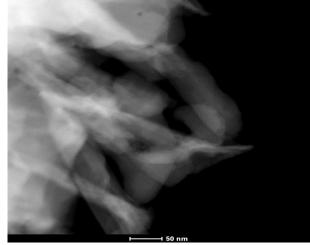





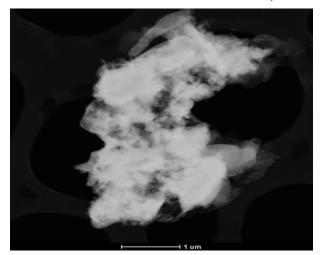
Figure S4. Additional SEM image of KCMS-org.CVD

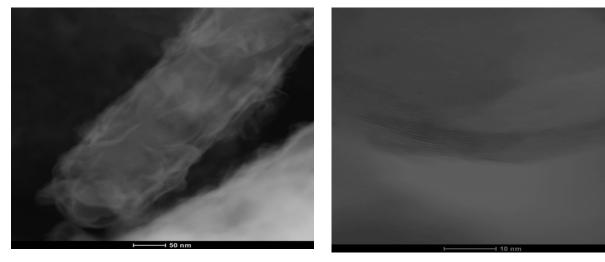


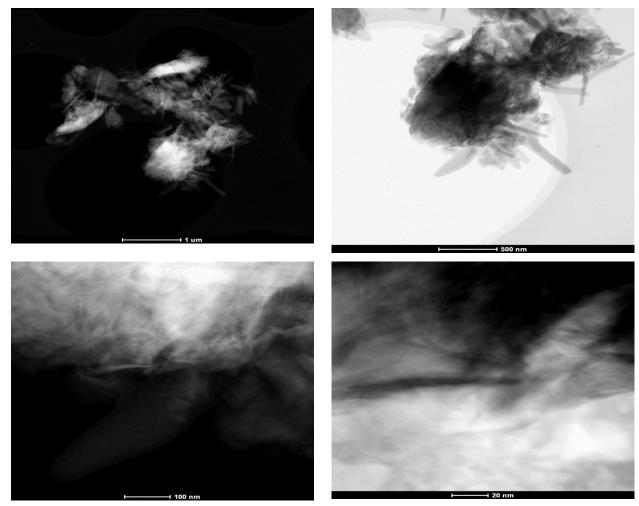


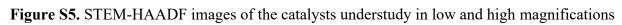


d) KCMS-org.H₂S


Figure S5. SEM/EDX of sulfided catalysts under study




a) KCMS-Inorg.CVD



b) KCMS-Inorg.H₂S

d) KCMS-org.H₂S

	Selectivity (with CO ₂), %			
Product	KCMS-org.CVD	KCMS-org.H ₂ S	KCMS-Inorg.H ₂ S	KCMS- Inorg.CVD
CO_2	61	18	21	13
C1	0	5	1	2
C2	2	3	8	1
C3	4	0	5	0
C4	5	0	2	1
MeOH	7	12	32	10
PrOH-2	0	0	0	0
EtOH	14	29	19	71
BuOH-2	0	0	0	0
PrOH-1	2	19	5	1
i-BuOH	4	5	6	0
BuOH-1	0	6	1	0
i-AmOH	0	2	0	0
AmOH-1	0	2	0	0

Table S1. Product distribution selectivity (with CO₂) over the catalysts understudy. Reaction conditions: T = 360 °C, P = 5 MPa, $GHSV = 760 \text{ ml} (g_{cat} \text{ h})^{-1}$), syngas ratio (CO/H₂ =1:1)

In terms of morphological evaluation, a comprehensive analysis of the slab structure can be achieved provided there is adequate contrast, which is often attainable with model catalysts like metal sulfides supported on carbon substrates [1–2]. *Baubet et al.* [3] conducted an in-depth investigation into the size and shape of alumina-supported Co-Mo sulfide structures. However, their study utilized catalysts with low metal loading and relatively high sulfidation temperatures (reaching up to 800°C), resulting in the formation of larger, well-separated slab structures (up to 10 nm) that were easier to characterize. The catalysts synthesized in our study via chemical vapor deposition (CVD) exhibit a Mo loading similar to those reported by Baubet et al. [3], but they display significantly larger visible particles. When compared to CVD-prepared catalysts, those synthesized using H₂S exhibit fewer distinct CoSx crystals or Co-rich particles. In the case of the H2S preparation method, the absence of organic additives in catalysts derived from inorganic precursors (KCMS-Inorg.H2S) may enhance the interaction between the active metals and the support. This stronger interaction reduces the extent of sulfidation and contributes to the formation of smaller MoS₂ structures [4]. Additionally, it is important to note that indistinct projections of MoS₂ crystallites are often attributed to the reoxidation of MoS2 [5–6].

References

- Carlsson A., Brorson M., Topsøe H. Morphology of WS₂ nanoclusters in WS₂/C hydrodesulfurization catalysts revealed by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) imaging, *J. Catal.* 2004, 227, 530– 536.
- Brorson M., Carlsson A., Topsøe H. The morphology of MoS₂, WS₂, Co-Mo-S, Ni-Mo-S and Ni-W-S nanoclusters in hydrodesulfurization catalysts revealed by HAADF-STEM, *Catal. Today.* 2007, 123, 31–36.
- Baubet B., Girleanu M., Gay A.S., Taleb A.L., Moreaud M., Wahl F., Delattre V., Devers E., Hugon A., Ersen O., Afanasiev P., Raybaud P. Quantitative Twodimensional (2D) morphology-selectivity relationship of CoMoS nanolayers: A combined high-resolution high-angle annular dark field scanning transmission electron microscopy (HR HAADF-STEM) and density functional theory (DFT) Study. *ACS Catal.* 2016, 6, 1081–1092.
- Eijsbouts S. On the flexibility of the active phase in hydrotreating catalysts, *Appl. Catal.* A Gen. 1997, 158, 53–92.
- Bremmer G.M., Haandel L. V., Hensen E.J.M., Frenken J.W.M., Kooyman P.J. The effect of oxidation and resulfidation on (Ni/Co)MoS₂ hydrodesulfurisation catalysts. *Appl. Catal. B Environ.* 2019, 243, 145–150.
- Hallie H. Experience reveals best presulfiding techniques for HDS and HDN catalysts, Oil Gas J. 1982, 80, 69–74.