Supporting Information for:

Synergistic Effect of Acidic Sites and Mesoporous Confinement in Ce-Doped Ru/SBA-15 Catalysts for Efficient Hydrogenolysis of Low-Density Polyethylene to Liquid Fuels

Zhenghang Ren^a, Zhicheng Luo^{a,*}, Huiyan Zhang^{a,*}

^a Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 211189, China

*Corresponding author.

E-mail addresses: zluo@seu.edu.cn(Zhicheng Luo), hyzhang@seu.edu.cn(Huiyan Zhang).

Table of content

Table S1 Correction Factor Coefficients for Alkanes with Different Carbon Numbers Relative to
Octacosane
Figure S1 Typical GC-MS signals of LDPE hydrogenolysis liquid products dissolved in methylene
chloride over the Ru-Ce/SBA-15 catalyst
Figure S2 Carbon distributions of the products for LDPE hydrogenolysis over different catalysts4
Table S2 Comparison of Reaction Conditions and Performance of Ru-based catalysts in LDPE
hydrogenolysis
Figure S3 Ru nanoparticle size distribution on Ru Ce/SBA-15 with different Ce loadings6
Figure S4 Characterizations of 1%Ru-3%Ce/SBA-15
Figure S5 XPS spectra of Ru3d and Ru3p for Ru Ce/SBA-15 with different Ce loadings8
Figure S6 Carbon distributions of LDPE hydrogenolysis over 1%Ru-5%Ce/SBA-15 prepared with
different ethanol to water ratios
Figure S7 Carbon distributions of LDPE hydrogenolysis over 1%Ru-5%Ce/SBA-15 prepared with
different Ce precursors
Figure S8 Elemental mapping images of 1%Ru-7%Ce/SBA-15 synthesized using CeCl ₃ 11
Figure S9 Carbon distributions of LDPE hydrogenolysis over 1%Ru-5%Ce/SBA-15 calcined at
different temperatures
Figure S10 Selectivity of liquid products for LDPE hydrogenolysis over 1%Ru-Ce/SBA-15 (a)
calcined at different temperatures and (c) with different Ce Loadings
Figure S11 Carbon distributions of LDPE hydrogenolysis over 1%Ru-7%Ce/SBA-15 at different
reaction temperatures
Figure S12 Carbon distributions of LDPE hydrogenolysis over 1%Ru-7%Ce/SBA-15 under
different H2 pressures15
Figure S13 Yields of triphasic products for LDPE hydrogenolysis over 1% Ru-7% Ce/SBA-15 for
different reaction times
References

Carbon Number	Correction Factor	Carbon Number	Correction Factor
C ₇	2.808	C ₂₃	1.034
C ₈	2.014	C ₂₄	1.039
C9	1.623	C ₂₅	1.035
C ₁₀	1.393	C ₂₆	0.995
C ₁₁	1.307	C ₂₇	1.012
C ₁₂	1.256	C ₂₈	1.000
C ₁₃	1.236	C ₂₉	1.027
C ₁₄	1.188	C ₃₀	0.989
C ₁₅	1.179	C ₃₁	0.954
C ₁₆	1.149	C ₃₂	0.919
C ₁₇	1.130	C ₃₃	0.939
C ₁₈	1.101	C ₃₄	0.942
C ₁₉	1.125	C ₃₅	1.043
C ₂₀	1.060	C ₃₆	1.194
C ₂₁	1.081	C ₃₇	1.486
C ₂₂	1.037	C ₃₈	1.87

Table S1 Correction Factor Coefficients for Alkanes with Different Carbon Numbers Relative to Octacosane.

Figure S1 Typical GC-MS signals of LDPE hydrogenolysis liquid products dissolved in methylene chloride over the Ru-Ce/SBA-15 catalyst.

Figure S2 Carbon distributions of the products for LDPE hydrogenolysis over different catalysts.

catalyst	temperature (K)	pressure (MPa)	time(h)	plastic/ catalyst	reaction rate $(g_p \cdot g_{Ru}^{-1} \cdot h^{-1})$	liquid yield (%)	ref.
Ru/C	473	2	16	28	15.75	45.00	[1]
Ru/C	493	3	1	2	29.96	74.90	[2]
Ru/C	498	2	16	14	11.90	68.00	[3]
Ru/C	448	8.2	76	10	1.50	57.00	[4]
Ru/CeO ₂	513	6	5	34	4.30	91.00	[5]
Ru/CeO ₂	453	3	18	4	3.44	31.00	[6]
Ru/SAC CeO ₂	523	2	6	4	315.00	94.50	[7]
Ru-WZr	523	5	2	40	220.00	55.00	[8]
Ru/ZrO ₂	513	6	4	34	151.13	88.90	[9]
Ru/ZrO ₂	473	5	5	6	14.84	87.30	[9]
Ru/VZr	523	5	2	80	544.00	68.00	[10]
Ru/TiO ₂ -R	523	3	6	34	94.52	83.40	[11]
Ru-Ce/SBA- 15	553	3	24	100	509.14	43.99	this work
Ru-Ce/SBA- 15	553	3	6	100	800.46	17.29	this work

 Table S2 Comparison of Reaction Conditions and Performance of Ru-based catalysts in LDPE

 hydrogenolysis.

Figure S3 Ru nanoparticle size distribution on Ru-Ce/SBA-15 with different Ce loadings.

Figure S4 Characterizations of 1%Ru-3%Ce/SBA-15. (a) TEM image. (b) HAADF images. (c-f) elemental mapping images.

Figure S5 XPS spectra of (a-c) Ru3d and (d-f) Ru3p for Ru-Ce/SBA-15 with different Ce loadings.

Figure S6 Carbon distributions of LDPE hydrogenolysis over 1%Ru-5%Ce/SBA-15 prepared with different ethanol to water ratios.

Figure S7 Carbon distributions of LDPE hydrogenolysis over 1%Ru-5%Ce/SBA-15 prepared with different Ce precursors.

Figure S8 Elemental mapping images of 1%Ru-7%Ce/SBA-15 synthesized using CeCl₃.

Figure S9 Carbon distributions of LDPE hydrogenolysis over 1%Ru-5%Ce/SBA-15 calcined at different temperatures.

Figure S10 Selectivity of liquid products for LDPE hydrogenolysis over 1%Ru-Ce/SBA-15 (a) calcined at different temperatures and (c) with different Ce Loadings.

Figure S11 Carbon distributions of LDPE hydrogenolysis over 1%Ru-7%Ce/SBA-15 at different reaction temperatures.

Figure S12 Carbon distributions of LDPE hydrogenolysis over 1%Ru-7%Ce/SBA-15 under different H₂ pressures.

Figure S13 Yields of triphasic products for LDPE hydrogenolysis over 1% Ru-7% Ce/SBA-15 for different reaction times.

References

1. J. E. Rorrer, G. T. Beckham and Y. Román-Leshkov, JACS Au, 2021, 1, 8-12.

2. C. Jia, S. Xie, W. Zhang, N. N. Intan, J. Sampath, J. Pfaendtner and H. Lin, *Chem Catalysis*, 2021, 1, 437-455.

3. J. E. Rorrer, C. Troyano-Valls, G. T. Beckham and Y. Román-Leshkov, *ACS Sustainable Chemistry & Engineering*, 2021, **9**, 11661-11666.

4. L. Chen, Y. Zhu, L. C. Meyer, L. V. Hale, T. T. Le, A. Karkamkar, J. A. Lercher, O. Y. Gutiérrez and J. Szanyi, *Reaction Chemistry & Engineering*, 2022, 7, 844-854.

5. Y. Nakaji, M. Tamura, S. Miyaoka, S. Kumagai, M. Tanji, Y. Nakagawa, T. Yoshioka and K. Tomishige, *Applied Catalysis B: Environmental*, 2021, **285**, 119805.

L. Chen, L. C. Meyer, L. Kovarik, D. Meira, X. I. Pereira-Hernandez, H. Shi, K. Khivantsev, O. Y. Gutiérrez and J. Szanyi, *ACS Catalysis*, 2022, DOI: 10.1021/acscatal.2c00684.

M. Chu, X. Wang, X. Wang, X. Lou, C. Zhang, M. Cao, L. Wang, Y. Li, S. Liu, T.-K. Sham, Q. Zhang and J. Chen, *Research*, 2023, 6, 0032.

8. C. Wang, T. Xie, P. A. Kots, B. C. Vance, K. Yu, P. Kumar, J. Fu, S. Liu, G. Tsilomelekis, E. A. Stach, W. Zheng and D. G. Vlachos, *JACS Au*, 2021, **1**, 1422-1434.

9. T. Masazumi, M. Shuhei, N. Yosuke, T. Mifumi, K. Shogo, N. Yoshinao, Y. Toshiaki and T. Keiichi, *Applied Catalysis B: Environmental*, 2022, DOI: 10.1016/j.apcatb.2022.121870.

10. C. Wang, K. Yu, B. Sheludko, T. Xie, P. A. Kots, B. C. Vance, P. Kumar, E. A. Stach, W. Zheng and D. G. Vlachos, *Applied Catalysis B: Environmental*, 2022, DOI: 10.1016/j.apcatb.2022.121899.

11. T. Kim, H. Nguyen-Phu, T. Kwon, K. H. Kang and I. Ro, *Environmental Pollution*, 2023, **331**, 121876.