Supplementary Information

Modulating the Alkalinity of Molten Chloride Salt with Proton

Sources for Ammonia Synthesis

Bingxu Xi,¹ Jian Liu,¹ Bo Yang,¹ and Xiaofei Guan^{1, *}

¹ School of Physical Science and Technology, ShanghaiTech University, Shanghai, 393 Huaxia

Middle Road, Shanghai, 201210, China

*E-mail: guanxf@shanghaitech.edu.cn; xiaofei@bu.edu

Contents:

- Figure S1
- Figure S2
- Table S1
- Figure S3
- Figure S4
- Figure S5
- Figure S6
- Figure S7
- Figure S8
- Table S2
- Table S3
- Figure S9
- Figure S10
- Note S1
- Table S4
- Figure S11
- Figure S12
- Figure S13
- Figure S14

Figure S1. (a) A digital photograph of the Li₃N prepared from the reaction between Li metal and N₂ at 100 °C for 24 h. (b) The XRD pattern of the Li₃N product. The characteristic peaks for α -Li₃N (PDF card No. 76-0593) and β -Li₃N (PDF card No. 78-2005) were indexed. The wide signal at around 18° was attributed to the polyimide film cover for the sample.

Figure S2. Schematic diagram of the setup of the 3-step experiment for NH_3 synthesis. During the 1 h electrolysis, metallic Li generated was confined within an alumina sleeve. Subsequently, N₂ was introduced into the cathode region for two hours to react with the Li, forming Li₃N dissolved as Li⁺ and N³⁻ in the molten salt. The N³⁻ ions diffused throughout the molten salt and ultimately reacted with the HCl introduced in the third step to generate NH₃.

Experiments	Mass of NH3 in the exit gas over	Total mass of NH3 absorbed	Total moles of NH3 absorbed
	6 h (g)	(g)	(mol)
Empty reactor	0.2058	0	0
LiCl-KCl	0.1912	0.0146	8.590×10 ⁻⁴
0.002 mol LiH–LiCl–KCl	0.1809	0.0249	1.465×10^{-3}
0.004 mol LiH–LiCl–KCl	0.1444	0.0614	3.612×10 ⁻³
0.006 mol LiH–LiCl–KCl	0.1422	0.0636	3.741×10 ⁻³
0.008 mol LiH–LiCl–KCl	0.1067	0.0991	5.829×10 ⁻³
0.002 mol Li ₃ N–LiCl–KCl	0.1547	0.0511	3.006×10 ⁻³
0.004 mol Li ₃ N–LiCl–KCl	0.1116	0.0942	5.541×10 ⁻³
0.006 mol Li ₃ N–LiCl–KCl	0.0556	0.1502	8.835×10 ⁻³
0.008 mol Li ₃ N–LiCl–KCl	0.0176	0.1882	1.107×10^{-2}

Table S1. Amount of NH₃ absorbed in the reactors containing molten salts of varying compositions. In each experiment, 5at%NH₃–95at%Ar was introduced into the reactor at 20 cm³/min for 6 h at 500 °C. An empty reactor was used in the baseline experiment.

Figure S3. The temperature dependence of the change in Gibbs free energy changes for the reactions involved in the experiments. The values of the enthalpies of LiNH₂ and Li₂NH are taken from the literature.¹ The enthalpies and entropies of other substances are taken from "Standard Thermodynamic Properties of Chemical Substances" published by NIST. The enthalpy changes and the entropy changes of the reactions were assumed to be independent on temperature. The standard molar enthalpy of formation and standard molar entropy of each substance were used in the calculations.

Figure S4. Time dependence of the temperature and the CO_2 concentration detected by GC in the experiment of introducing 25% CO_2 -75%Ar to the molten LiCl-KCl.

Figure S5. The XRD pattern of the solid white powders obtained after washing the salt (resulting from the reaction between $25\%CO_2-75\%Ar$ and 5mol% Li₃N in molten salt) with de-ionized water and drying it. The XRD pattern shows Li₂CO₃ (PDF card No. 87-0729) as the dominant phase.

Figure S6. The XRD pattern of the solid white powders obtained after washing the salt (resulting from the reaction between $25\%CO_2-75\%Ar$ and 5mol% LiH in molten salt) with de-ionized water and drying it. The XRD pattern shows the Li₂CO₃ (PDF card No. 87-0729) as the dominant phase and the KCl (PDF card No. 72-1540) as the minor phase.

Figure S7. Raman characterization of the black solid sample collected from the upper part of the reactor after the reaction between CO_2 and LiH in the molten salt. Before the Raman characterization, the sample was washed with deionized water and ethanol and subsequently dried.

Figure S8. The time dependence of the NH₃ yield rate obtained in the experiment of introducing H₂O carried by Ar to the molten eutectic LiCl–KCl containing 2 mol% of Li₃N. To prepare the salt, ~7.8771 g of LiCl, ~9.7068 g of KCl were weighed, mixed, and then added on top of ~0.2246 g of Li₃N inside an alumina crucible (OD: 18mm; ID: 13mm; length: 40cm). 2%H₂O–98%Ar (20 cm³/min) was fed into the molten salt for 300 minutes at 500 °C.

Table S2. Screenshots of the simulation results for the reactions between the alkaline species (Li₃N, Li₂NH, LiNH₂, LiH) with the proton sources (H₂, NH₃, H₂O, HCl) in the respective initial state (IS), the transition state (TS), and the final state (FS). Color code: N atom, blue; H atom, white; Li atom, pink; O atom, red; Cl atom, green. The lines between some atoms are shown mainly to make their relative positions and distances more discernible. Some of the lines do not represent the presence of chemical bonds.

		Li ₃ N	Li ₂ NH	LiNH ₂	LiH
H ₂	IS	3 28 J		30-0-3	*
	TS		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	8 80-0	
	FS	÷.			3
NH3	IS	30° 05	200	३० इर्	
	TS	2000 C	and the second s	૱૾૾ૡ	•
	FS	in the second	**	<u>ن</u> ه وز	8 o- 6 5
H ₂ O	IS	·		به م ر	• •
	TS				
	FS	;• ` ••	*	90, ⁰ 00	3 e .
НСІ	IS	సినా			د. م
	TS				
	FS	3 3 30	*	÷	3

Table S3. The simulation results of different gases with Li_3N , Li_2NH , $LiNH_2$, and LiH. The calculations were performed using Gaussian 09 software [1], with the B3LYP functional and 6-31G(d) basis set.

		Li ₃ N	Li ₂ NH	LiNH ₂	LiH
TT	TS (eV)	0.01	0.19	0.10	0.60
Π2	FS (eV)	-2.30	-2.40	-0.60	0.00
NILL	TS (eV)	0.25	0.17	0.34	0.88
I NП 3	FS (eV)	-2.30	-2.50	-0.00	0.60
II-O	TS (eV)				0.05
П2О	FS (eV)	-3.08	-3.29	-0.80	-0.48
UCI	TS (eV)				
псі	FS (eV)	-4.00	-4.04	-2.32	-2.00

Figure S9. The standard decomposition voltages of molten LiCl and molten KCl as a function of temperature, with data obtained from the HSC Chemistry database.²

Figure S10. The voltage vs. time data during the constant-current electrolysis scans at different currents using the molten salt electrochemical setup as illustrated in Figure 5a.

Note S1. Calculation of the synthesis efficiency of NH₃

In the 3-step method for NH₃ synthesis in the molten salt-based system, the number of electrons transferred during the 1st step of electrolysis can be used to determine the amount of metallic Li produced assuming a 100% Faradaic efficiency. Assuming that all of this Li can be used for the N₂ fixation, the molar amount of Li₃N can be calculated. If further assuming that all of this Li₃N can be converted into NH₃ by reacting with HCl, the theoretical amount of NH₃ produced can be calculated. In each experiment, the exit gas was passed into H₂SO₄ aqueous solution. The actual amount of NH₃ collected in the H₂SO₄ aqueous solution was determined by coupling a colorimetric indicator method with the UV-Vis spectroscopy. The synthesis efficiency of NH₃ was defined as the ratio of the actual amount of NH₃ collected to the theoretical amount of NH₃ produced (i.e., the theoretical yield of NH₃), as expressed by the following formula:

$$\eta_{NH_3} = n_{NH_3} / rac{current * duration * N}{N_A * 3}$$

where:

- η_{NH_3} represents the synthesis efficiency of NH₃,
- n_{NH₃} represents the number of moles of NH₃ collected by the H₂SO₄ aqueous solution,
- *current* represents the electrolysis current,
- *duration* represents the electrolysis duration,
- *N* represents the number of electrons per coulomb,
- *N_A* represents Avogadro's constant.

If ammonium chloride needs to be considered, the total synthesis efficiency of NH₃ and NH₄Cl (η_{total}) is expressed as follows:

$$\eta_{total} = \eta_{NH_3} + \eta_{NH_4Cl} = [n_{NH_3} + n_{NH_4Cl}] / \frac{current * duration * N}{N_A * 3}$$

where

- η_{NH_4Cl} represents the synthesis efficiency of NH₄Cl,
- η_{NH_4Cl} represents the moles of NH₄Cl collected near the inner surface of the stainless steel flange.

Electrolysis current	Total mass of NH ₃	Theoretical amount of	Synthesis efficiency
in the 1 st step	collected (g)	NH ₃ produced (g)	of NH ₃ (%)
0.5 A	0.0090	0.1058	8.48
0.8 A	0.0187	0.1692	11.02
1.0 A	0.0340	0.2115	16.07
1.5 A	0.1545	0.3172	48.68

Table S4. The total amount of NH₃ synthesized and the synthesis efficiency of NH₃ after the three-step experiments involving electrolysis at different currents.

Figure S11. Time dependence of the NH₃ synthesis rate in the three-step experiment involving bubbling a mixture of H₂ (10 cm³/min) and Ar (10 cm³/min) in the 3rd step following a 1 h electrolysis at 5 V in the 1st step and a 2 h N₂ feeding to the bottom of the molten salt near the cathode in the 2nd step. Note that the N₂ was fed to the space confined by the alumina sleeve above the molten salt surface during the 1st step, and the N₂ bubbling to the bottom of the molten salt was also maintained during the 3rd step.

Figure S12. The temperature dependence of the molar standard Gibbs free energy change (ΔG°) for the reaction of $2Li_3N + Al_2O_3 \rightleftharpoons 3Li_2O + 2AlN$. The data were obtained from the HSC Chemistry database.² The negative value of ΔG° suggests the thermodynamic spontaneity of the corrosion of Al_2O_3 by Li_3N dissolved in the molten salt.

Figure S13. (a) Digital photographs of a pristine alumina tube and an alumina tube after immersing in molten eutectic LiCl–KCl *with* 2mol% Li₃N for 20 h at 500 °C. The alumina tube turned black after the reaction with Li₃N in the molten salt. (b) Digital photographs of a pristine alumina tube and an alumina tube after immersing in molten eutectic LiCl–KCl *without* Li₃N for 20 h at 500 °C. The alumina tube after immersing in LiCl–KCl remained white, suggesting the key role of Li₃N in corroding the alumina. (c) SEM image of an inner surface of a piece of alumina sample (white sample in panel *e*) showing smooth morphology. (d) SEM image of the black surface of a piece of alumina sample after immersing in the molten salt containing 2mol% Li₃N (black sample in panel *e*), showing rough morphology and thereby suggesting the corrosion of alumina with Li₃N. (e) Digital photographs of two alumina samples above a carbon conductive tape on a copper holder for SEM characterization.

Figure S14. (a) Digital photograph of a pristine alumina tube (outer diameter: 6 mm). Note that the Ni metal rod (diameter: 3 mm) inside the alumina bubbling tube was used as the cathode for the electrolysis. (b) Digital photograph of an alumina tube after the experiment comprising of three cycles and each involving 1 h electrolysis at 1.5 A. The part of the alumina tube submerged in the molten salt was corroded.

References for Supplementary Information

- 1. P. Chen, Z. Xiong, J. Luo, J. Lin and K. L. Tan, *Nature*, 2002, **420**, 302-304.
- 2. A. Roine, *HSC Chemistry Database 5.11*, 2002, Outokumpu Research, Finland.