Supporting Information

Rationally engineering an H₂O₂-dependent P450 dihydroxylase for

steroid functionalisation

Quanjin Wang,^{a†} Mingming Qin,^{b†} Qian Wang,^{b†‡} Kaiming Wang,^a and Zhiqi Cong*^b

^a University of Jinan, School of Biological Science and Technology, Jinan 250024, China.

^b Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.

[†] These authors contributed equally to this work.

[‡] Current address: Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266000, China.

* Corresponding to congzq@qibebt.ac.cn

Experimental Section

Materials

All chemical reagents were purchased from commercial sources (e.g. Aldrich, TCI, Fluka, and Alladin) and used without further purification until otherwise noticed.

Expression and Purification of CYP105D18

The pET-28a (+) vectors containing CYP105D18 and its variants were transformed into Escherichia coli BL 21(DE3) cells, and the cells were cultivated in LB medium containing 50 µg/ml kanamycin. The cultures were grown at 37 °C with vigorous shaking (~200 rpm). When the OD_{600} of the cultures reached 0.8~1.0, the temperature was cooled to 20 °C, and the expression was induced by the addition of IPTG (1 mM) and δ -aminolevulinic acid hydrochloride (0.5 mM). Following 36 h of expression, the cells were harvested by centrifugation and stored at -20 °C. Purification was done by Ni-NTA metal-affinity chromatography. Cell pellets were resuspended in ice-cold buffer A (100 mM KP_i, 100 mM NaCl, imidazole (20 mM), pH 7.4) and lysed by sonication. Cell debris was removed by centrifugation for 30 min at 20 000 g, and the crude cell extraction were applied to a 5 mL bed volume column pre-equilibrated with buffer A. Nonspecifically bound proteins were washed from the column with 5 column volumes of buffer A containing 30 mM imidazole. The bound protein was eluted with buffer B (100 mM KPi, 100 mM NaCl, imidazole (200 mM), pH 7.4). The purified protein solution was exchanged with buffer C (100 mM KPi, 100 mM NaCl, pH 7.4), enzyme its variants concentrated by ultrafiltration and frozen in buffer C plus 50% glycerol at -20 °C. The concentrations of CYP105D18 and its variants were measured by Hemochrome binding assay. A pyridine solution was made by combining pyridine (1.75 mL) and 1 M aqueous of NaOH (0.75 mL). The solution was mixed at room temperature then centrifuged for 30 s at 5000 rpm to remove excess aqueous base. To a cuvette containing 0.75 mL of protein solution in phosphate buffer (0.1 M, pH 8.0), 0.25 mL of the pyridine solution was added followed by 2 mg of sodium dithionite. A UV/vis spectrum was recorded immediately. Hemoprotein concentration was determined from the absorbance of the hemochrome complex using extinction coefficients of $\epsilon 418 = 196 \text{ mM}^{-1}\text{cm}^{-1}$. Absorbance was assigned as the difference between the peak max at 418 nm and the baseline at 420 nm as determined by extrapolating from two points on either side of the hemochrome peak (390 nm and 450 nm).

Mutagenesis

All the mutations were made by PCR based site-directed mutagenesis and verified by DNA sequencing. The primers used were as follows:

Sequence
CACGTATTgcaCTGGAAATTGCCCTGGGTACC
TTCCAGtgcAATACGTGCCAGATTCTGGCCCA
ATTCCGAGTgcaACCCTGCGTCGTGCAGAAAG
AGGGTtgcACTCGGAATCAGCATGCGACGCTG
TGGCATTgcaCAGTGTCTGGGGCCAGAATCTGG
GACACTGtgcAATGCCAAAACCAAAGGCAACA
CCAGAATgcaGCACGTATTGAACTGGAAATTGC
TACGTGCtgcATTCTGGCCCAGACACTGATGA
GTGTCTGgcaCAGAATCTGGCACGTATTGAACTG
GATTCTGtgcCAGACACTGATGAATGCCAAAACC
TGTTGCCgcaGGTTTTGGCATTCATCAGTGTCT
CAAAACCtgcGGCAACATGATGGCGTGCGCTG
ATTGCCGATGGCgcaGTGCGCGTGGCACGTGAA
ACtgcGCCATCGGCAATACTCAGAAAACGCAG
TGgcaGTGGCACGTGAAGATGTGCCGGTGGGC
TTCACGTGCCACtgcCACCAGGCCATCGGCAAT
CGAACTGgcaGAAACCAAACGTACCGATCCGG
TGGTTTCtgcCAGTTCGCCAAAATAGCCTTCC
TATGGTTgcaTGCGAACTGCTGGGTGTGCCGT
GTTCGCAtgcAACCATACTCGGAACCGGCAGG
TGgcaGCAGGTCATGAAACCACCGCCAATATG
TTCATGACCTGCtgcCAGCAGAACGGTGGCAAACT
GTATGGCGATgcaGAATTTTTCGAAGAACAGAGCCG
ATTCtgcATCGCCATACGGCACACCCAGCAGT
TTTGCCACCGTTgcaCTGGTGGCAGGTCATGAAACC

L232A-R	AGtgcAACGGTGGCAAACTGCACCAGTTCATC
L187A-F	TTTCGTAGCgcaGAAGGCTATTTTGGCGAACTGA
L187A-R	CCTTCtgcGCTACGAAATGCTTTTTCAATATCTT
L346A-F	AGTGTgcaGGCCAGAATCTGGCACGTATTGAA
L346A-R	ATTCTGGCCtgcACACTGATGAATGCCAAAACCA
Q348A-F	TGTCTGGGCgcaAATCTGGCACGTATTGAACTGGA
Q348A-R	AGATTtgcGCCCAGACACTGATGAATGCCAAA
D160A-F	GTATGGCgcaCATGAATTTTTCGAAGAACAGAGC
D160A-R	ATTCATGtgcGCCATACGGCACACCCAGCAGT
L153A-F	TTTGCGAAgcaCTGGGTGTGCCGTATGGCGAT
L153A-R	ACCCAGtgcTTCGCAAATAACCATACTCGGAA
Y190A-F	AAGGCgcaTTTGGCGAACTGATTGAAACCAAA
Y190A-R	TTCGCCAAAtgcGCCTTCCAGGCTACGAAATGC
I281A-F	TTCTGAGTgcaGCCGATGGCCTGGTGCGCGTG
I281A-R	ATCGGCtgcACTCAGAAAACGCAGCAGTTCTT
L194A-F	GGCGAAgcaATTGAAACCAAACGTACCGATCC
L194A-R	GTTTCAATtgcTTCGCCAAAATAGCCTTCCAG
L359A-F	AAATTGCCgcaGGTACCCTGCTGCGCCGTCTG
L359A-R	GGTACCtgcGGCAATTTCCAGTTCAATACGTG
H161A-F	GTATGGCGATgcaGAATTTTTCGAAGAACAGAGCCG
H161A-R	ATTCtgcATCGCCATACGGCACACCCAGCAGT
N349A-F	AGgcaCTGGCACGTATTGAACTGGAAATTGCC
N349A-R	AATACGTGCCAGtgcCTGGCCCAGACACTGATGAATG
V286A-F	TTGCCGATGGCCTGgcaCGCGTGGCACGTGAAGAT
V286A-R	tgcCAGGCCATCGGCAATACTCAGAAAACGCA
T248A-F	TCTGGCAgcaTATACCCTGCTGGAACATCCGG
T248A-R	GGGTATAtgcTGCCAGACTAATCATATTGGCG
P202A-F	TACCGATgcaGGTGAAGGTGTTATTGATGATCTGG
P202A-R	CTTCACCtgcATCGGTACGTTTGGTTTCAATCA
F340A-F	CTTTGGTgcaGGCATTCATCAGTGTCTGGGCC
F340A-R	GAATGCCtgcACCAAAGGCAACATGATGGCGT
D208A-F	TATTgcaGATCTGGTGGCCCGTCAGCGTGAAG
D208A-R	CCACCAGATCtgcAATAACACCTTCACCCGGATCG
T197A-F	TGAAgcaAAACGTACCGATCCGGGTGAAGGTG
T197A-R	CGGTACGTTTtgcTTCAATCAGTTCGCCAAAATAGC

F164A-F	TTgcaGAAGAACAGAGCCGTCGCCTGCTGCGT		
F164A-R	GCTCTGTTCTTCtgcAAATTCATGATCGCCATACGG		
T200A-F	ACCAAACGTgcaGATCCGGGTGAAGGTGTTATTG		
T200A-R	GGATCtgcACGTTTGGTTTCAATCAGTTCGCC		
K198A-F	TTGAAACCgcaCGTACCGATCCGGGTGAAGGT		
K198A-R	GGTACGtgcGGTTTCAATCAGTTCGCCAAAAT		
E196A-F	CTGATTgcaACCAAACGTACCGATCCGGGTGA		
E196A-R	CGTTTGGTtgcAATCAGTTCGCCAAAATAGCCT		
L154A-F	TTTGCGAACTGgcaGGTGTGCCGTATGGCGATC		
L154A-R	ACCtgcCAGTTCGCAAATAACCATACTCGGAA		
K199A-F	AACCAAAgcaACCGATCCGGGTGAAGGTGTTA		
K199A-R	GATCGGTtgcTTTGGTTTCAATCAGTTCGCCA		
I353A-F	CACGTgcaGAACTGGAAATTGCCCTGGGTACC		
I353A-R	TTCCAGTTCtgcACGTGCCAGATTCTGGCCCA		
V211A-F	TTGATGATCTGgcaGCCCGTCAGCGTGAAGAAG		
V211A-R	GGCtgcCAGATCATCAATAACACCTTCACCCG		
L233A-F	TTCTGgcaGTGGCAGGTCATGAAACCACCGCC		
L233A-R	ACCTGCCACtgcCAGAACGGTGGCAAACTGCA		
S104A-F	GATTCCGgcaTTTACCCTGCGTCGTGCAGAAA		
S104A-R	GGGTAAAtgcCGGAATCAGCATGCGACGCTGT		
F191A-F	TATgccGGCGAACTGATTGAAACCAAACGTAC		
F191A-R	ATCAGTTCGCCggcATAGCCTTCCAGGCTACGAAATG		
L154G-F	TTTGCGAACTGggtGGTGTGCCGTATGGCGATC		
L154G-R	ACCaccCAGTTCGCAAATAACCATACTCGGAA		
L154S-F	TTTGCGAACTGagcGGTGTGCCGTATGGCGATC		
L154S-R	ACCgctCAGTTCGCAAATAACCATACTCGGAA		
L154T-F	TTTGCGAACTGaccGGTGTGCCGTATGGCGATC		
L154T-R	ACCggtCAGTTCGCAAATAACCATACTCGGAA		
F164G-F	TTggtGAAGAACAGAGCCGTCGCCTGCTGCGT		
F164G-R	GCTCTGTTCTTCaccAAATTCATGATCGCCATACGG		
F164S-F	TTagcGAAGAACAGAGCCGTCGCCTGCTGCGT		
F164S-R	GCTCTGTTCTTCgctAAATTCATGATCGCCATACGG		
F164T-F	TTaccGAAGAACAGAGCCGTCGCCTGCTGCGT		
F164T-R	GCTCTGTTCTTCggtAAATTCATGATCGCCATACGG		
T200G-F	ACCAAACGTggtGATCCGGGTGAAGGTGTTATTG		
	1		

T2000 D			
T200G-R	GGATCaccACGTTTGGTTTCAATCAGTTCGCC		
T200S-F	ACCAAACGTagcGATCCGGGTGAAGGTGTTATTG		
T200S-R	GGATCgctACGTTTGGTTTCAATCAGTTCGCC		
V211G-F	TTGATGATCTGggtGCCCGTCAGCGTGAAGAAG		
V211G-R	GGCaccCAGATCATCAATAACACCTTCACCCG		
V211S-F	TTGATGATCTGagcGCCCGTCAGCGTGAAGAAG		
V211S-R	GGCgctCAGATCATCAATAACACCTTCACCCG		
V211T-F	TTGATGATCTGaccGCCCGTCAGCGTGAAGAAG		
V211T-R	GGCggtCAGATCATCAATAACACCTTCACCCG		
F184G-F	AAAAGCAggtCGTAGCCTGGAAGGCTATTTTG		
F184G-R	GGCTACGaccTGCTTTTTCAATATCTTCTGCTGC		
F184S-F	AAAAGCAagcCGTAGCCTGGAAGGCTATTTTG		
F184S-R	GGCTACGgctTGCTTTTTCAATATCTTCTGCTGC		
F184T-F	AAAAGCAaccCGTAGCCTGGAAGGCTATTTTG		
F184T-R	GGCTACGggtTGCTTTTTCAATATCTTCTGCTGC		
L233G-F	TTCTGggtGTGGCAGGTCATGAAACCACCGCC		
L233G-R	ACCTGCCACaccCAGAACGGTGGCAAACTGCA		
L233S-F	TTCTGagcGTGGCAGGTCATGAAACCACCGCC		
L233S-R	ACCTGCCACgctCAGAACGGTGGCAAACTGCA		
L233T-F	TTCTGaccGTGGCAGGTCATGAAACCACCGCC		
L233T-R	ACCTGCCACggtCAGAACGGTGGCAAACTGCA		
R199G-F	AACCAAAggtACCGATCCGGGTGAAGGTGTTA		
R199G-R	GATCGGTaccTTTGGTTTCAATCAGTTCGCCA		
R199S-F	AACCAAAagcACCGATCCGGGTGAAGGTGTTA		
R199S-R	GATCGGTgctTTTGGTTTCAATCAGTTCGCCA		
R199T-F	AACCAAAaccACCGATCCGGGTGAAGGTGTTA		
R199T-R	GATCGGTggtTTTGGTTTCAATCAGTTCGCCA		

The double mutants were prepared used single mutants as parent templates. Prepare triple mutants using double mutants as parent templates.

Water access tunnel analysis

The wild type CYP105D18 (PDB ID: 7DI3) was used for water access tunnel analysis. The water access tunnels were analyzed by CAVER 3.0.3 tool with following parameters: 0.9 Å of probe radius; 3 Å of shell radius; 4 Å of shell depth; 3.5 of clustering threshold; the start point was the heme cofactor.

General procedure for H₂O₂-dependent hydroxylation of steroids catalyzed by CYP105D18

The CYP105D18 and its variants (1 μ M) were transferred to a glass flask containing 0.1 M, pH 7.4 phosphate buffer, steroids (0.2-1 mM, 2% DMSO). The reaction mixture was incubated in water bath at 30 °C for 2 min and initiated by the addition of H₂O₂ (10-120 mM, dissolved 7.4 phosphate buffer) in water bath at 30 °C for 60 min. After the reaction is complete, samples (0.5 mL) were extracted using 0.5 mL dichloromethane. The organic phases were dried over anhydrous sodium sulfate. After complete evaporation of the dichloromethane, the residue was dissolved in 0.5mL acetonitrile and analyzed using high-performance liquid chromatography (HPLC). The conversion rate of substrate was calculated based on the unreacted steroids. The turnover number (TON) is defined as the ratio of product concentration to enzyme concentration.

General procedure for calculating TON of testosteroneby H₂O₂-dependent CYP105D18

The CYP105D18 and its variants (1 μ M) were transferred to a glass flask containing 0.1 M, pH 7.4 phosphate buffer, Substrates (0.2mM, 2% DMSO). The reaction mixture was incubated in water bath at 30 °C for 2 min and initiated by the addition of H₂O₂ (10-120 mM, dissolved pH 7.4 phosphate buffer) in water bath at 30 °C for 60 min. After the reaction is complete, samples (0.5 mL) were extracted using 0.5 mL dichloromethane. The organic phases were dried over anhydrous sodium sulfate. After complete evaporation of the dichloromethane, the residue was dissolved in 0.5 mL acetonitrile. Subsequently, the conversion rate was detected and calculated using high-performance liquid chromatography (HPLC).

Determination of kinetic parameters

To determine the relevant kinetic parameters of testosterone, the initial rate of substrate oxidation was measured in 100 mM PBS buffer (pH 7.4) containing 1 μ M enzyme, 60 mM H₂O₂, and 10-200 μ M testosterone.

MD simulation method

All models were built using Gromacs 2023 with periodic boundary conditions.¹ The protonation of enzymes was calculated at pH 7.4 using the online server H++.^{2, 3}The AMBER-ff19SB force field⁴ was used for enzymes. Structure optimization and frequency analysis of small molecules were performed using ORCA 5.0.4.⁵, the force field parameters of which were then obtained, and topology files were generated using both Multiwfn⁶ and AmberTools.^{7, 8} The TIP3P water model was used to construct a cubic water box to solvate the systems, and ions were added to maintain electrical neutrality.

All simulations were performed using the GPU version of Gromacs 2023, and preequilibrium simulations preceded production phase simulations. In the pre-equilibrium stage, the steepest descent method was used to minimize energy. Under a constant pressure of 1 bar, the temperature was gradually heated from 0 K to 298 K in 1000 ps and given sufficient time for relaxation. The equilibrium was ensured by monitoring the potential energy, temperature and density convergence of the system at each stage. The SETTLE algorithm⁹ was used to constrain the structure of water, while the LINCS algorithm¹⁰ was used to constrain the bonds connected to H atoms. The Particle Mesh Ewald (PME) algorithm¹¹ was used to estimate the long-range electrostatic interactions. The V-rescale algorithm was used to couple the temperature of the system, and the Berendsen algorithm¹² and Parrinello-Rahman algorithm¹³ were used to couple the pressure of the system at NPT and the production phase, respectively.

Crystallization of CYP105D18 F191A and F191A/F184A mutants.

Before crystallization, the buffer of CYP105D18 mutants was changed into 10mM Tris pH 8.0 by superdex increase 10/300 GL column. The crystallization experiment of F191A was performed at 20 °C using a hanging drop evaporation method by mixing 1 μ L of the protein solution (40 mg/mL protein supplemented with 1.25 μ M testosterone dissolved by DMSO) and 1 μ L of a reservoir solution (0.15M (NH₄)₂SO₄, 0.1M Bis-tris PH 6.5, 23% PEG3350). Dimond-like crystals were obtained within 2 weeks and soaked in a cryoprotecting solution containing 0.15M (NH₄)₂SO₄, 0.1M Bis-tris PH

6.5, 23% PEG3350, and 20% glycerol for 3 min before they were transferred into liquid nitrogen for data collection. As for F191A/F184A double mutant, the crystallization experiment was performed similar at 20 °C by hanging drop evaporation method by mixing 1 μ L of the protein solution (50 mg/mL protein supplemented with 1.25 μ M testosterone dissolved by DMSO) and 1 μ L of a reservoir solution (0.2 M Li₂SO₄, 0.1 M Bis-Tris, pH 6.5, and 23 %(w/v) PEG 3350). Single crystal was obtained within few days and soaked in a cryoprotecting solution for later X-ray diffraction.

Data collection and structure determination

The X-ray diffraction data of CYP105D18 mutants was collected from Shanghai Radiation Facility (SSRF) BL10U2 beamline by the EIGER2 X 16M detector under 100K. The collected dataset was first processed by Aquarium¹⁴ and autoPX¹⁵ for reflection data integration and reduction. Then the crystal structure was solved by molecular replacement (MR) strategy by Phenix¹⁶ Phaser-MR using the template structure (PDB ID:7DI3). The structure model was then built by COOT¹⁷and future refined by Phinex. Finalized structure quality was evaluated by MolProbility¹⁸ and deposited to Protein Data Bank (PDB ID: 9U7W and 9U7X). The details of the structures were summarized in Table S1. Figures of the structure were generated PyMol(https://www.schrodinger.com).

D 4	CYP105D18	CYP105D18	
Protein	F191A	F184A/F191A	
PDB Entry	9U7X	9U7W	
Data collection			
Space group	C 1 2 1	<i>C 1 2 1</i>	
Unit cell			
dimensions			
a, b, c (Å)	91.154, 52.109, 87.412	91.28, 52.342, 87.673	
α,β,γ (°)	90, 110.72, 90	90, 110.684, 90	
Multiplicity	5.7 (3.3)	3.0 (2.0)	
Completeness (%)	99.29 (94.45)	98.51 (93.49)	
I/σ_I	11.85 (4.31)	11.61 (1.82)	
R _{merge}	0.0862 (0.2671)	0.0551 (0.4149)	
Wilson B factor	9.48	11.23	
$(Å^2)$			
$CC_{1/2}$	0.989 (0.91)	0.983 (0.698)	
Refinement			
Resolution range	40.88 - 1.45 (1.502 - 1.45)	36.77 - 1.09 (1.129 - 1.09)	
(Å)		× , , , , , , , , , , , , , , , , , , ,	
NO. reflections	67656 (6412)	158630 (14920)	
$R_{\rm work}/R_{\rm free}$	0.1510/0.1660	0.1523/0.1692	
Number of non-	3656	3694	
hydrogen atoms Macromolecules	3057	3024	
Ligands/ions	85	91 570	
Solvent	514	579	
Average B-factor	19.40	21.16	
Macromolecules	17.35	18.45	
Ligands	18.78	25.42	
Solvent	31.69	34.66	
r.m.s.d. for ideal			
value	0.007	0.017	
Bond length (Å)	0.007	0.016	
Bond angle (°)	0.98	1.70	
Ramachandran			
plot Favored/allowed/o			
utliers (%)	97.92/2.08/0	98.43/1.57/0	

Table S1 Data collection and refinement statistics. ^[a]

[a] Values for the highest resolution shell are given in parentheses.

Instruments and analytical conditions

HPLC

Dissolve the dry residue of biotransformation containing testosterone in acetonitrile and inject it into a high-performance liquid chromatography (HPLC) system equipped with Shim pack GIST C18-AQ, 5um, 4.6 x 250 column (Shimadzu, Japan) at 30 °C using Beckmann Coulter. Acetonitrile: Water (60:40) was used as the mobile phase, with a flow rate of 1 mL/min. Detect substrates and their respective products by UV absorption at 243nm. The substrate was eluted at 7.15 minutes, while the product of 2 β -hydroxytestosterone was detected at 4.66 minutes. The products of 16 α -hydroxytestosterone were eluted in 3.29 minutes. The products of 2 β ,15 α -dihydroxytestosterone were eluted in 2.9 minutes.

LC-MS

The preliminary product identification was carried out using a liquid chromatography-Q-TOF high-resolution mass spectrometer (Bruke Maxis UHR TOF), and Acetylotrile: Water (60:40) was used as the mobile phase, with a flow rate of 1 mL/min.

Preparation, separation, and purification of 2β -hydroxytestosterone and 2β , 15α -dihydroxytestosterone

The preparation of 2 β -hydroxytestosterone was respectively carried out in 500mL pH 6.0 PBS buffer at 30 °C. The initial reaction includes 0.2mM substrate (2% Ethyl alcohol solubilized), 20mM H₂O₂, and 0.5 μ M F184A/F191A/E196A. After the reaction is complete, extract three times with equal volumes of dichloromethane, combine the organic phases, dry with anhydrous sodium sulfate, and remove the solvent under reduced pressure. Hydroxylation products were separated using silica gel column chromatography (200 - 300 mesh) with ethyl acetate/hexane (5:1) as the eluent. The organic phase was concentrated under reduced pressure to remove the solvent, yielding a white solid product: 7 mg, 2 β -hydroxytestosterone, 24.3% yield.

The preparation of 2β , 15α -dihydroxytestosterone was respectively carried out in 500mL pH 6.0 PBS buffer at 30 °C. The initial reaction includes 26.2mg 2 β -hydroxytestosterone (2% Ethyl alcohol solubilized), 60mM H₂O₂, and 6 μ M F184A/F191A/E196A. After the reaction is complete, extract three times with equal volumes of dichloromethane, combine the organic phases, dry with anhydrous sodium sulfate, and remove the solvent under reduced pressure. 2β , 15α -dihydroxytestosterone products were separated using silica gel column chromatography (200 - 300 mesh) with ethyl acetate/carbinol/hexane (5:1:3) as the eluent. The organic phase was concentrated under reduced pressure to remove the solvent, yielding a white solid product:, 16.2 mg, 2β , 15α -dihydroxytestosterone, 61.8% yield.

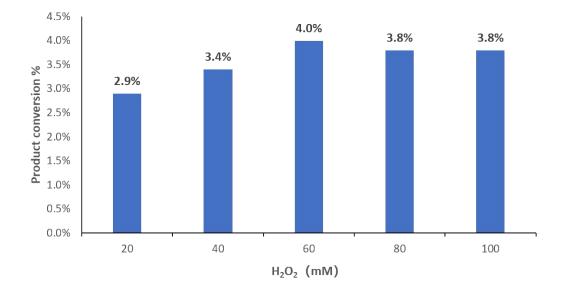


Figure S1. CYP105D18 heme domain using H₂O₂ concentrations ranging from 20–100 mM. The reaction was carried out in 500 μ L of 100 mM PBS (pH 7.4) containing 1 μ M enzyme and 200 μ M testosterone, with different concentrations of H₂O₂(20-100mM), at 30°C for 1 hour.

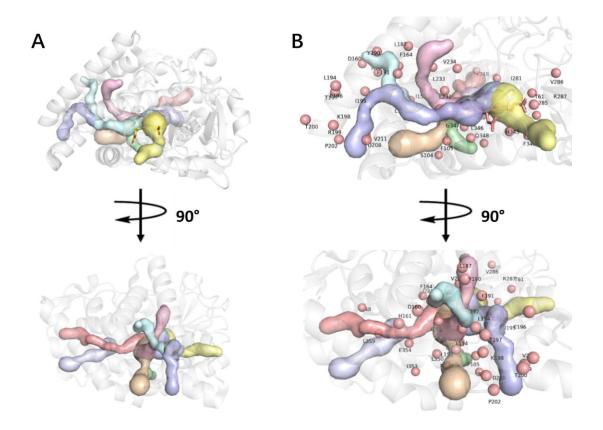
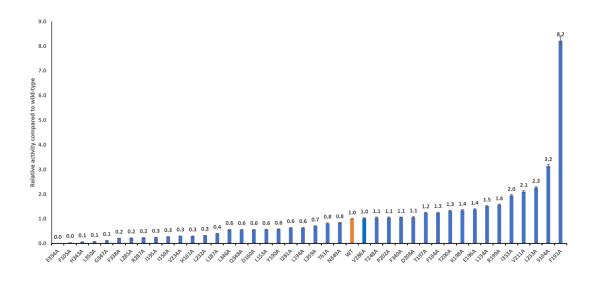



Figure S2. (A) All water tunnels identified in the crystal structure of CYP105D18 WT.(B) Key amino acid sites.

Figure S3. First - round HTE alanine scanning relative to WT activity. The reaction was carried out in 500 μ L of 100 mM PBS (pH 7.4) containing 1 μ M enzyme and 200 μ M testosterone, with 60 mM H₂O₂, at 30°C for 1 hour.

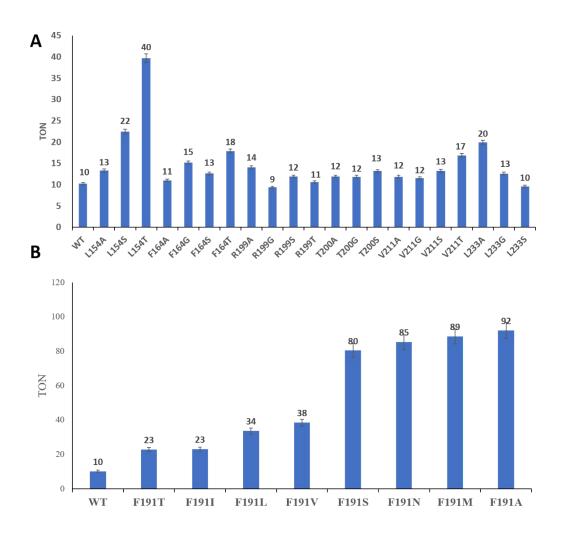
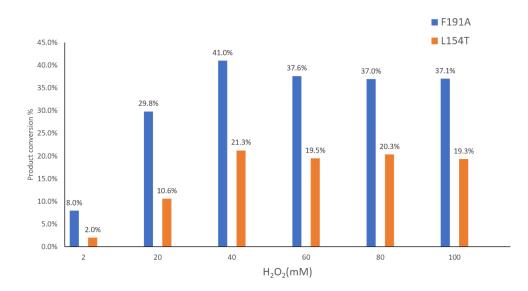



Figure S4. The TON of superior mutation site was further screened. The reaction was carried out in 500 μ L of 100 mM PBS (pH 7.4) containing 1 μ M enzyme and 200 μ M testosterone, with 60 mM H₂O₂, at 30°C for 1 hour.

Figure S5. F191A and L154T heme domain using H₂O₂ concentrations ranging from 2– 100 mM.The reaction was carried out in 500 μ L of 100 mM PBS (pH 7.4) containing 1 μ M enzyme and 200 μ M testosterone, with different concentrations of H₂O₂(2-100mM), at 30°C for 1 hour.

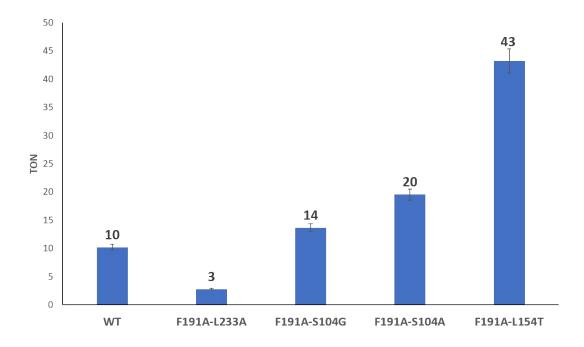
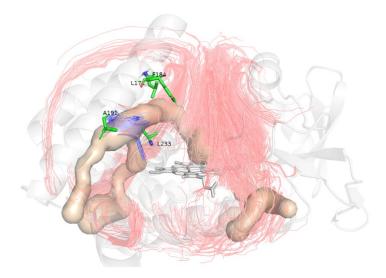
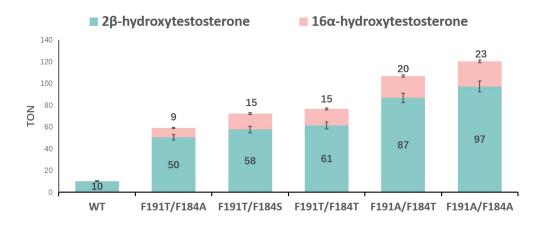




Figure S6. The TON of double mutant. The reaction was carried out in 500 μ L of 100 mM PBS (pH 7.4) containing 1 μ M enzyme and 200 μ M testosterone, with 60 mM H₂O₂, at 30°C for 1 hour.

Figure S7. MD simulation results of 191A mutant and prediction results of CAVER 3.0.3 water tunnel.

Figure S8. F184 and F191 combined double mutation. The reaction was carried out in 500 μ L of 100 mM PBS (pH 7.4) containing 1 μ M enzyme and 200 μ M testosterone, with 60 mM H₂O₂, at 30°C for 1 hour.

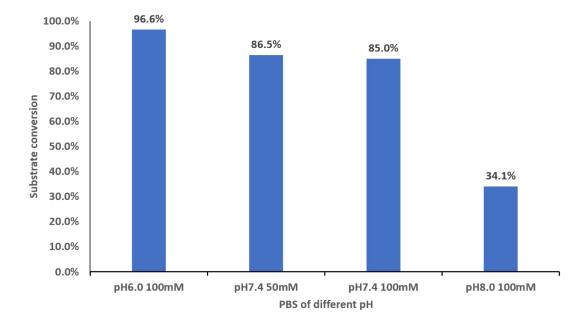


Figure S9. Optimization of reaction conditions for AAA mutant. The reaction was carried out in 500 μ L of PBS with different pH values, containing 1 μ M AAA and 200 μ M testosterone, with 60 mM H₂O₂, at 30°C for 1 hour.

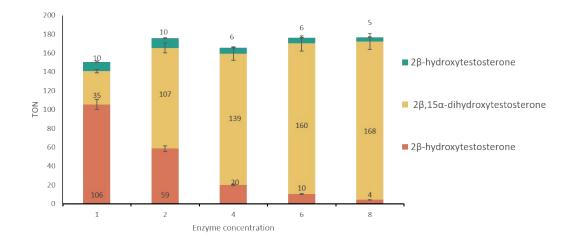
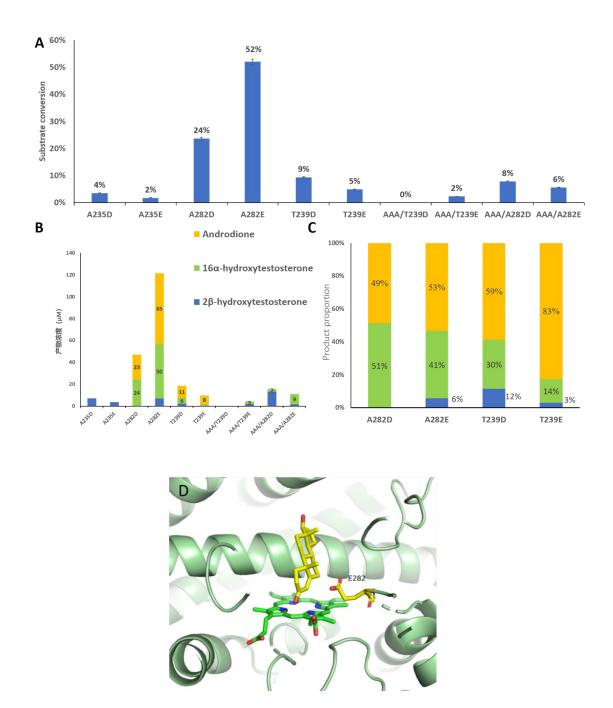
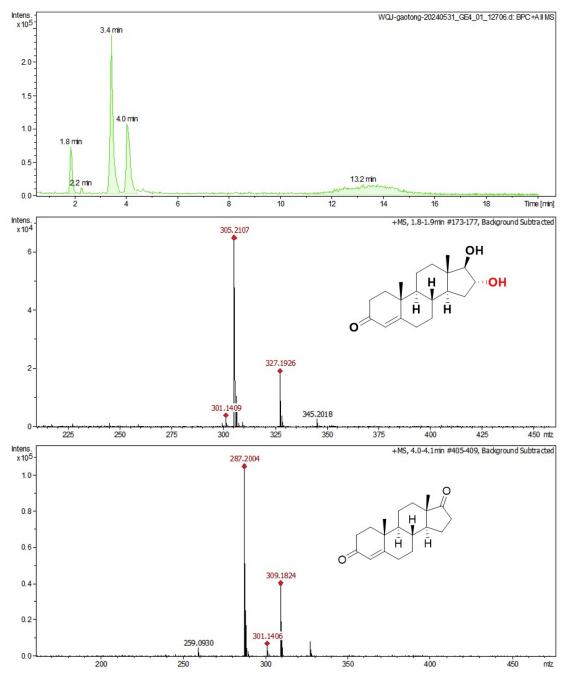




Figure S10. Conversion of 2β -hydroxytestosterone to 2β , 15α dihydroxytestosterone. The reaction was carried out in 500 µL of 100 mM PBS (pH 6.0), containing 200 µM testosterone and 60 mM H₂O₂, with different concentrations of AAA (1–8 µM), at 30°C for 1 hour.

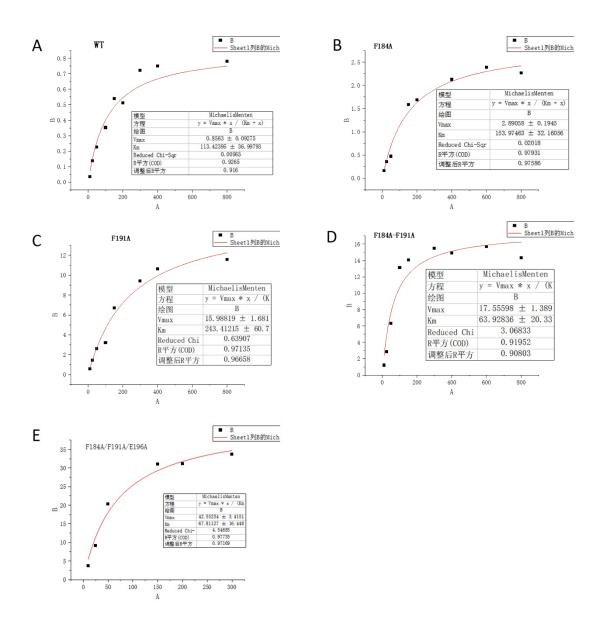

Figure S11. Catalytic residue substrate conversion rate(A) and product distributionand(B-C). The reaction was carried out in 500 μ L of 100 mM PBS (pH 6.0), containing 200 μ M testosterone, 60 mM H₂O₂, and 1 μ M enzyme, at 30°C for 1 hour. (D) Molecular docking of the A282E mutant with testosterone.

Figure S12. Major products observed in testosterone hydroxylation by the A282E mutant (Top).

LC-MS spectrum of 16α-hydroxytestosterone LCMS (ESI): m/z [M+H]+: calcd. for C19H29O3: 305.4318; found: 305.2107 (Medium).

LC-MS spectrum of androstenedione LCMS (ESI): m/z [M+H]+: calcd. for C19H27O2: 287.3983; found: 287.2004 (Bottom).

Figure S13. Kinetic parameters of CYP105D18 WT, F184A, F191A, F184A/F191A, and F184A/F191A/E196A for testosterone (A-E). Kinetic data for testosterone were measured in a system containing 60 mM H_2O_2 with an enzyme concentration of 1 μ M.

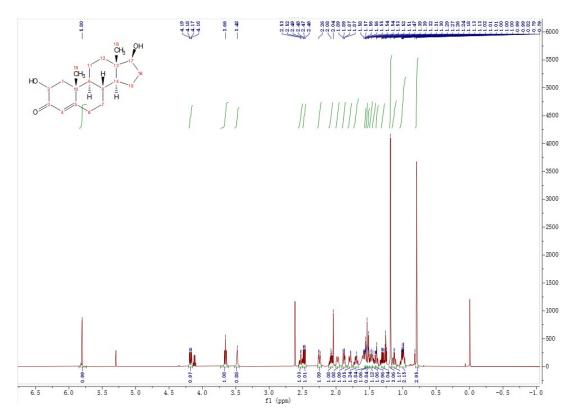
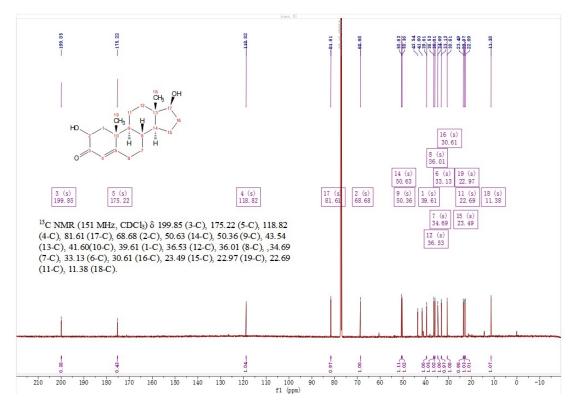



Figure S14 ¹H NMR (600 MHz, Chloroform-*d*) δ 5.80 (s, 1H, H-4), 4.17 (dd, 1H, H-2), 3.66 (t, 1H,H-17) ,2.48(dd, 1H, H-1 α), 2.07 (m, 1H, H-16 α), 1.51 (H-1 β), 1.45 (H-16 β), 1.18 (s, 3H, H-19), 0.79 (s, 3H, H-18)

Figure S15 ¹³C NMR (151 MHz, Chloroform-*d*) δ 199.85 (3-C), 175.22 (5-C), 118.82 (4-C), 81.61 (17-C), 68.68 (2-C), 50.63 (14-C), 50.36 (9-C), 43.54 (13-C), 41.60(10-C), 39.61 (1-C), 36.53 (12-C), 36.01 (8-C), ,34.69 (7-C), 33.13 (6-C), 30.61 (16-C), 23.49 (15-C), 22.97 (19-C), 22.69 (11-C), 11.38 (18-C).

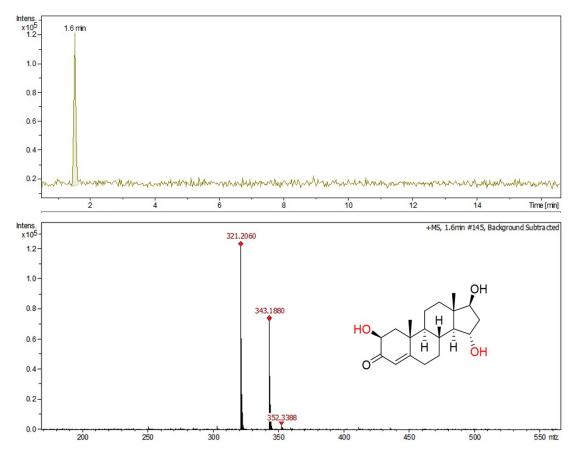
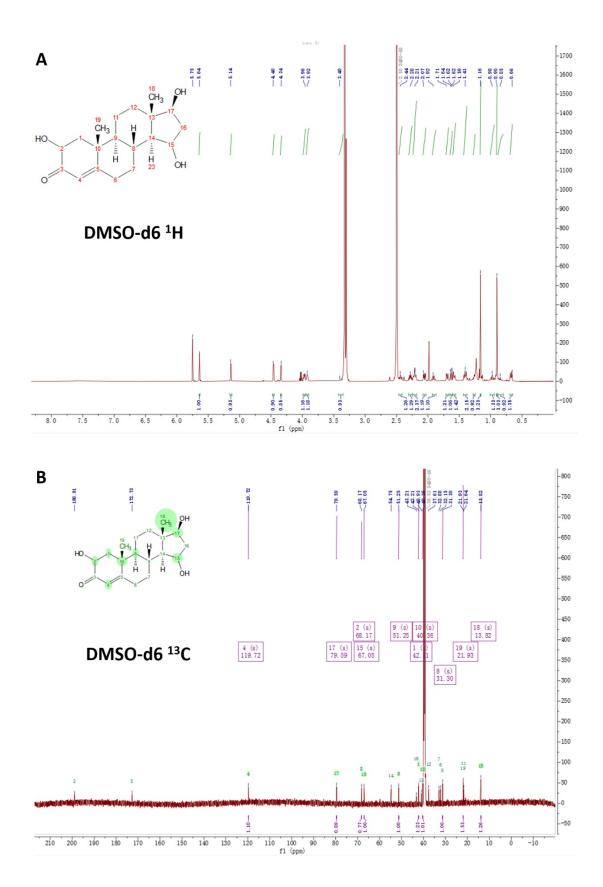
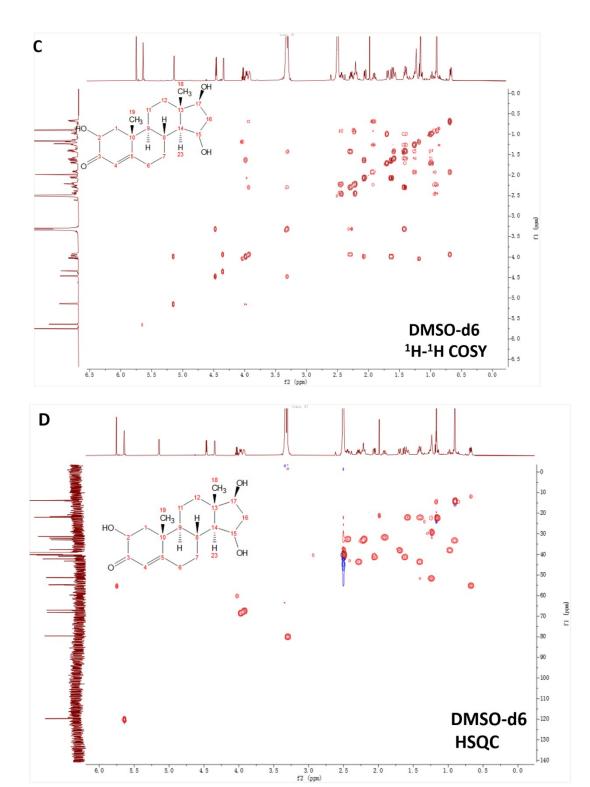




Figure S16. LC-MS spectrum of 2β , 15α -dihydroxytestosterone. LCMS (ESI): m/z [M+H]+: calcd. for C₁₉H₂₉O₄: 321.41826; found: 321.2060.

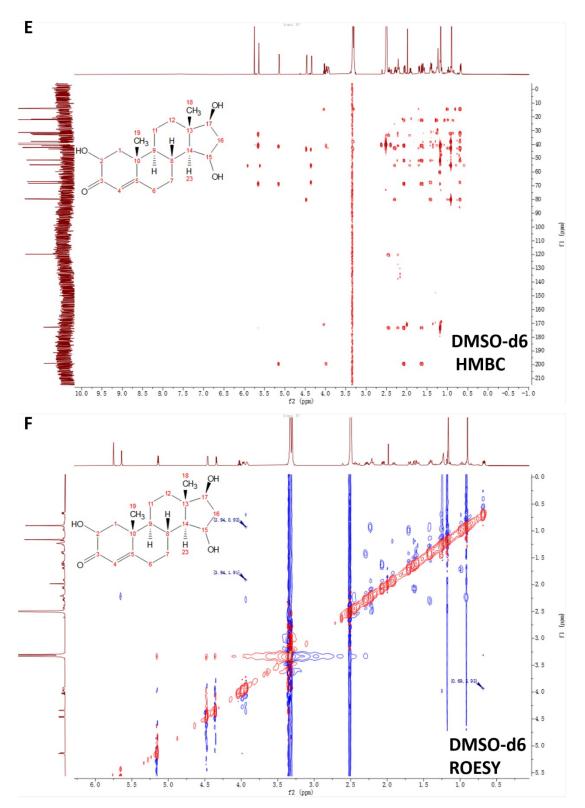


Figure S17. NMR spectrum of 2β , 15α -dihydroxytestosterone in DMSO-D6.

HO = 1 + 12 + 15 + 15 + 15 + 15 + 15 + 15 +					·
	1		1		
No	$\delta_{ m C}$	$\delta_{\rm H}$ (mult., J in Hz)	No	$\delta_{ m C}$	$\delta_{\rm H}$ (mult., J in Hz)
1	40.9	2.06, dd (13.8, 4.8) 1.62, dd (13.8, 11.0)	11	21.6	1.58, dd (13.5, 3.2) 1.41
2	68.2	3.97, ddd (11.6, 8.1, 3.6)	12	37.6	1.69, m 0.98, dt (12.8, 3.8)
3	198.9	-	13	42.2	-
4	119.7	5.64, brs	14	54.7	0.68, m
5	172.7	-	15	67.1	3.93, m
6	32.1	2.44, m 2.21, m	16	43.2	2.28, dt (8.0, 8.0, 14.2) 1.41, m
7	32.9	2.21, m 0.92, m	17	79.6	3.31
8	31.3	1.91, ddd (22.4, 11.3, 3.4)	18	13.8	0.90, s
9	51.2	1.23, m	19	21.9	1.17, s
10	40.3	-			

Table S2. ¹H and ¹³C NMR data for 2β ,15 α -dihydroxytestosterone in DMSO-D6

Table S3. HMBC,¹H-¹H COSY and ROESY data for 2β ,15 α -dihydroxytestosterone in

DMSO-D6)
---------	---

No	HMBC	¹ H- ¹ H COSY	ROESY
1	2,4,19	1 , 2	
2	1,4	1	
3	1,2		
4	6	6	
5	1,4,6,19		
6	4 , 7	4,6,7	
7	6,8	6 , 8 , 9	
8	7,9,14	7,9,11,14	
9	1,8,11	7 , 8 , 11	
10	1,4,6,9		
11	9,12	2 , 9 , 11 , 12 , 16 , 17	
12	11 , 14 , 18	11 , 12 , 16	
13	12,18		
14	8 , 16 , 18	8 , 15	
15	14,16	14,16	18
16	17,18	15 , 16 , 17	
17	16,18	16	
18	12 , 14 , 17		15
19	1,9		

Reference

- D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, H. J. Berendsen, J. Comput. Chem. 2005, 26 (16), 1701-1718.
- J. C. Gordon, J. B. Myers, T. Folta, V. Shoja, L. S. Heath, A. Onufriev, *Nucleic Acids Res.* 2005, 33, W368-W371.
- 3. R. Anandakrishnan, B. Aguilar, A. V. Onufriev, *Nucleic Acids Res.* 2012, **40**, W537-W541.
- C. Tian, K. Kasavajhala, K. A. A. Belfon, L. Raguette, H. Huang, A. N. Migues, J. Bickel, Y. Wang, J. Pincay, Q. Wu, C. Simmerling, *J. Chem. Theory. Comput.* 2020, **16 (1)**, 528-552.
- 5. F. Neese, WIREs. Comput. Mol. Sci. 2022, 12 (5), e1606.
- 6. T. Lu, F. Chen, J. Comput. Chem. 2012, **33 (5)**, 580-592.
- D. A. Case, T. E. Cheatham III, T. Darden, H. Gohlke, R. Luo, K. M. Merz Jr, A. Onufriev, C. Simmerling, B. Wang, R. J. Woods, J. Comput. Chem. 2005, 26 (16), 1668-1688.
- 8. R. Salomon-Ferrer, D. A. Case, R. C.Walker, *WIRES. Comput. Mol. Sci.* 2012, **3 (2)**, 198-210.
- 9. S. Miyamoto, P. A. Kollman, J. Comput. Chem. 1992, 13 (8), 952-962.
- 10. B. Hess, H. Bekker, H. J. C. Berendsen, J. G. E. M. Fraaije, J. Comput. Chem. 1997, 18 (12), 1463-1472.
- 11. T. Darden, D. York, L. Pedersen, J. Chem. Phys. 1993, 98 (12), 10089-10092.
- 12. A. S. Lemak, N. K. Balabaev, Mol. Simul. 1994, 13 (3), 177-187.
- 13. M. Parrinello, A. Rahman, J. Appl. Phys. 1981, 52 (12), 7182-7190.
- 14. F. Yu, Q. Wang, M. Li, H. Zhou, K. Liu, K. Zhang, Z. Wang, Q. Xu, C. Xu, Q. Pan, J. He, *J. Appl. Crystallogr.* 2019, **52 (2)**, 472–477.
- 15. L. Wang, Y. Yun, Z. Zhu, L. Niu, Acta Crystallogr. D Struct. Biol. Crystallogr. 2022, 78 (7), 890–902.
- P. D. Adams, P. V. Afonine, G. Bunkóczi, V. B. Chen, I. W. Davis, N. Echols, J. J. Headd, L. W. Hung, G. J. Kapral, R. W. Grosse-Kunstleve, A. J. McCoy, N. W. Moriarty, R. Oeffner, R. J. Read, D. C. Richardson, J. S. Richardson, T. C. Terwilliger, P. H. Zwart, *Acta Crystallogr. Sect. D-Biol. Crystallogr.* 2010, 66, 213–221.
- 17. P. Emsley, B. Lohkamp, W. G. Scott, K. Cowtan, *Acta Crystallogr. Sect. D: Biol. Crystallogr.* 2010, 66, 486–501.
- V. B. Chen, W. B. Arendall, J. J. Headd, D. A. Keedy, R. M. Immormino, G. J. Kapral, L. W. Murray, J. S. Richardson, D. C. Richardson, *Acta Crystallogr., Sect. D: Struct. Biol. Crystallogr.* 2010, 66, 12–21.