Supplementary Information (SI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2025

Supplementary Information

Family Feature of Lanthanide Rare-earth (RE) Phosphate: Cooperative Activation of H₂ with H₂O or NH₃ Enables Efficient Furfural Upgradation over Ni₂P/REPO₄ Catalysts

Wen-yi Xu, Chao Cheng, Wei-ming Xiao, Sheng-jun Deng, Shun-li Shi, Dan Zhao*, Shu-hua Wang, Shun-min Ding, Chao Chen

Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China

* Corresponding authors: Professor Dan Zhao;

E-mail: zhaodan@ncu.edu.cn (Dan Zhao);

Phone: +86-15879176996 (Dan Zhao);

Entry	Catalyst	Conv. (%) -	Selectivity (%)			СРО
			FOL	СРО	CPL	yield (%)
1	Ni ₂ P/SiO ₂	8.7	51.7	48.3	-	4.2
2	Ni ₂ P/YPO ₄	96.3	11.5	86.2	2.3	83.1
3	Ni ₂ P/DyPO ₄	91.8	11.3	87.9	0.8	80.7
4	Ni ₂ P/LaPO ₄	98.8	11.5	83.9	4.6	82.9
5	Ni ₂ P/CePO ₄	97.1	5.5	92.9	1.6	90.2
6	Ni ₂ P/PrPO ₄	89.5	8.4	89.6	2.0	80.2
7	Ni ₂ P/NdPO ₄	94.2	8.2	91.4	0.4	86.1
8	Ni ₂ P/SmPO ₄	98.3	10.9	85.8	3.3	84.3
9	Ni ₂ P/EuPO ₄	78.2	2.9	96.4	0.7	75.4
10	Ni ₂ P/GdPO ₄	90.9	13.7	86.1	0.2	78.3
11	YPO ₄	-	-	-	-	-
12	LaPO ₄	-	-	-	-	-
13	SmPO ₄	-	-	-	-	-
14	CePO ₄	-	-	-	-	-

Table S1. Comparison of catalytic performance for hydrogenation of **FAL** to **CPO** on different catalysts. "-" means the value is lower than margin of test error. Reaction conditions: $5 \text{ mg}_{Cat.}/\text{ mL}_{water}$, 0.1 mol/L FAL, 423 K, P-H₂: 0.5 MPa, 6h.

Table S2. Comparison of catalytic performance for reductive amination of **FAL** to **FFA** on different catalysts. Reaction conditions: 5 mg _{Cat.} / mL _{isopropanol}, 0.1 mol/L FAL, 393 K, P-(NH₃+H₂): 1.0 MPa, 5h.

Entry	Catalyst	Com		Selectivity (%)		
		(%)	FFA	Schiff base	primary imine	yield (%)
1	Ni ₂ P/SiO ₂	>99	21.6	51.4	27	21.6
2	Ni ₂ P/YPO ₄	>99	17.1	43.9	39	17.1
3	Ni ₂ P/DyPO ₄	>99	9.7	90.3	-	9.7
4	Ni ₂ P/LaPO ₄	>99	98.2	1.8	-	98.2
5	Ni ₂ P/CePO ₄	>99	96.5	4.5	-	96.5
6	Ni ₂ P/PrPO ₄	>99	66.9	33.1	-	66.9
7	Ni ₂ P/NdPO ₄	>99	71.2	28.8	-	71.2
8	Ni ₂ P/SmPO ₄	>99	98.9	1.1	-	98.9
9	Ni ₂ P/EuPO ₄	>99	98.5	1.5	-	98.5
10	Ni ₂ P/GdPO ₄	>99	87.9	12.1	-	87.9
11	YPO ₄	80.6	5.7	84.8	9.5	4.6
12	LaPO ₄	>99	13.0	76.8	10.2	13.0
13	SmPO ₄	90.8	10.1	83.0	6.9	9.2
14	CePO ₄	95.0	16.8	79.9	3.3	16.0

Fig. S1. XRD patterns of Ce-P, Pr-P and Gd-P samples.

Fig. S2. The influence of catalyst (Ni₂P/LaPO₄) concentration on the yield of CPO or FFA from FAL conversion.

Fig. S3. Top and side views of DFT simulation of H_2 adsorption and dissociation pathway on the surface of REPO₄. H_2 *: adsorbed H_2 on surface; H-H*: two adsorbed transition state atoms; 2H*: the adsorption of two isolated H on RE and O, respectively. (RE =Y, La, Sm)

(a) **YPO**₄ (Tetragonal Crystal Form)

Characteristics: The c-axis is the short axis, while the b-axis is the long axis. The angles α and γ are both approximately 90°, and β is around 103°. Rare earth element atoms and oxygen atoms form a nine-coordinate structure.

Characteristics: The c-axis is the short axis, while the b-axis is the long axis. The angles α and γ are both approximately 90°, and β is around 103°. Rare earth element atoms and oxygen atoms form a nine-coordinate structure.

(c) SmPO₄ (Hexagonal Crystal Form)

Characteristics: The c-axis is the short axis, while the a and b axes are equal and serve as the long axes. The angles α and β are both 90°, and γ is 120°. Rare earth element atoms and oxygen atoms form an octahedral coordination.