Supplementary Information (SI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2025

Supporting Information

Self-assembly of Sb₂S₃ NRs-M (M=Au, Ag, Pd) Heterostructures Towards Boosted Photocatalysis

Huawei Xie,^{a#} Bei-Bei Zhang,^{b#} Fang-Xing Xiao*^b

a. Department of Forensic Science, Fujian Police College, Fuzhou, China. The Engineering Research Center,

Fujian Police College, Fuzhou, China.

b. College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian

Province, 350108, China.

#These two authors contributed equally to this work.

E-mail: fxxiao@fzu.edu.cn

Fig. S1. (a) Survey and high-resolution (b) Sb 3d and (c) S 2p spectra of Sb_2S_3 NRs.

Fig. S2. HRTEM image of Sb_2S_3 NRs-2% Au heterostructure.

Fig. S3. TEM image of Sb_2S_3 NRs-3%Ag heterostructure.

Fig. S4. TEM image of Sb_2S_3 NRs-2%Pd heterostructure.

Fig. S5. (a) SEM image and (e) EDX result of Sb_2S_3 NRs with elemental mapping results for (b) Sb and (c) S

signals.

Fig. S6. SEM images (a) and EDX results (b) of Sb₂S₃ NRs-2%Au n heterostructure; elemental mapping results of Sb₂S₃ NRs-2%Au heterostructure for (d) Sb, (e) S and (f) Au signals.

Fig. S7. (a & c) SEM images and (b) EDX results of Sb₂S₃ NRs-3%Ag heterostructure with elemental mapping results (d) Sb, (e) S and (f) Ag signals.

Fig. S8. (a & c) SEM images and (b) EDX result of Sb₂S₃ NRs-2%Pd heterostructure with elemental mapping results for (d) Sb, (e) S and (f) Pd signals.

Fig. S9. Photoactivities of (a, b, c) Sb₂S₃ NRs-2%Au, (d, e, f) Sb₂S₃ NRs-3%Ag and (g, h, i) Sb₂S₃ NRs-2%Pd heterostructures toward degradation of RhB, phenol, and ortho-hydroxybenzoic acid under visible light irradiation (λ >420 nm), respectively.

Element	Sb ₂ S ₃ NRs	Sb ₂ S ₃ NRs-2% Au	Sb ₂ S ₃ NRs-3% Ag	Sb ₂ S ₃ NRs-2% Pd	Chemical Bond Species
C 1s	284.6	284.6	284.6	284.6	C-C, C=C & C-H
Sb 3d _{5/2}	529.6	529.6	529.6	530.0	Sb ^{3+ 1,2}
Sb 3d _{3/2}	539.0	539.0	539.0	539.4	Sb ³⁺
S 2p _{3/2}	161.5	161.3	161.5	161.5	S ^{2-1,2}
S 2p _{1/2}	162.6	162.5	162.6	162.6	S ²⁻
Au 4f _{7/2}	N.D.	84.1	N.D.	N.D.	Au ^{0 3,4}
Au 4f _{5/2}	N.D.	87.7	N.D.	N.D.	Au^0
Ag 3d _{5/2}	N.D.	N.D.	368.2	N.D.	Ag ^{0 5,6}
Ag 3d _{3/2}	N.D.	N.D.	374.1	N.D.	Ag^0
Pd3d _{5/2}	N.D.	N.D.	N.D.	335.1	Pd ^{0 7,8}
Pd 3d _{3/2}	N.D.	N.D.	N.D.	340.3	Pd^0

N. D.: Not Detected.

Table S2. Peak positions along with the corresponding functional groups for blank Sb₂S₃ NRs, Sb₂S₃ NRs-

Peak position (cm ⁻¹)	Vibration mode
721	Sb-S
1365	СООН
1460	СООН
1650	СООН
2840	CH_2
2935	CH_2

 $2\%\,Au,\,Sb_2S_3\,NRs\text{-}3\%\,Ag$ and $Sb_2S_3\,NRs\text{-}2\%\,Pd$ heterostructures.

Samples	Specific Surface Area (m²/g)	Pore Volume (cm ³ /g)	Pore Size(nm)
Sb_2S_3NRs	6.6711	0.008297	4.97501
Sb ₂ S ₃ NRs-2% Au	11.4473	0.028025	9.7928
Sb ₂ S ₃ NRs-3% Ag	9.4766	0.018194	7.67965
Sb ₂ S ₃ NRs-2% Pd	29.3684	0.053209	7.24708

 Table S3. Summary of BET results for different results.

Table S4. Kinetic rate constants of Sb₂S₃ NRs-X%Au (X = 1, 2, 3, 4, 5) heterostructures toward degradation

of MO visib	le light irr	adiation (λ	>420 nm).
-------------	--------------	----------------------	-----------

Kinetic rate	Sb ₂ S ₃ NRs	Sb ₂ S ₃ NRs-				
(min ⁻¹)		1% Au	2% Au	3% Au	4% Au	5% Au
МО	0.0142	0.0269	0.0332	0.0145	0.0195	0.0270

Table S5. Kinetic rate constants of Sb₂S₃ NRs-X%Ag (X = 1, 2, 3, 4, 5) heterostructures toward degradation of MO under visible light irradiation (λ >420 nm).

Kinetic rate	Sb ₂ S ₃ NRs	Sb ₂ S ₃ NRs-				
(min ⁻¹)		1% Ag	2% Ag	3% Ag	4% Ag	5% Ag
МО	0.0142	0.0138	0.0168	0.0186	0.0163	0.0153

Table S6. Kinetic rate constants of Sb_2S_3 NRs-X%Pd (X = 1, 2, 3, 4, 5) heterostructures toward degradation

Kinetic rate	Sb ₂ S ₃ NRs	Sb ₂ S ₃ NRs-				
(min ⁻¹)		1% Pd	2% Pd	3% Pd	4% Pd	5% Pd
МО	0.0142	0.0343	0.0343	0.0318	0.0239	0.0245

References

- 1 H. L. Zhang, C. G. Hu, Y. Ding and Y. Lin, J. Alloy. Compd., 2015, 625, 90-94.
- 2 X. Z. Yuan, H. Wang, J. J. Wang, G. M. Zeng, X. H. Chen, Z. B. Wu, L. B. Jiang, T. Xiong, J. Zhang and H. Wang, *Catal. Sci. Technol.*, 2018, 8, 1545-1554.
- 3 F.-X. Xiao, J. Phys. Chem. C, 2012, 116, 16487-16498.
- 4 Z. F. Bian, J. Zhu, F. L. Cao, Y. F. Lu and H. X. Li, Chem. Commun., 2009, 25, 3789-3791.
- 5 Z. P. Zeng, F.-X. Xiao, H. Phan, S. F. Chen, Z. Z. Yu, R. Wang, T.-Q. Nguyen, T. T. Y. Tan, J. Mater. Chem. A, 2018, 6, 1700-1713.
- 6 Y. H. Zhang, Z. R. Tang, X. Z. Fu and Y. J. Xu, Appl. Catal. B: Environ., 2011, 106, 445-452.
- 7 T. Li, Y.-B. Li, M.-H. Huang, X.-C. Dai, Y. H. He, G. C. Xiao and F.-X. Xiao, J. Phys. Chem. C, 2019, 123, 4701-4714.
- 8 H. Li, G. Chang, Y. Zhang, J. Tian, S. Liu, Y. Luo, A. M. Asiri, A. O. Al-Youbi and X. Sun, *Catal. Sci. Technol.*, 2012, 2, 1153-1156.