Unlocking High Selectivity and Stability of Cobaltbased Catalyst in *n*-Butanol Amination Reaction

Fuwei Gan^{1,2}, Wen Liu¹, Xinbao Zhang¹, Maochen Qian^{1,2}, Shaoguo Li¹, Yuzhong Wang¹, Junjie Li^{1*}, Xiangxue Zhu¹, Xiujie Li^{1*}

- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- 2. University of Chinese Academy of Science, Beijing 100049, China

*Corresponding author:

Dr. Junjie Li; Prof. Xiujie Li State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023, China Phone: +86-411-84379279 Fax: +86-411-84379279 E-mail: lijj@dicp.ac.cn; xiujieli@dicp.ac.cn

Supplementary Tables

Catalysts	Co content ^a (wt.%)	S_{BET}^{b} (m^2/g)	S _{ext} (m ² /g)	V _{total} ^c (cm ³ /g)	V _{micro} (cm ³ /g)
3Co/SSZ-13	3.2	712	32	0.30	0.26
3Co/USY	3.3	840	127	0.64	0.27
3Co/S1	3.3	432	124	0.30	0.12
$3Co/Al_2O_3$	3.5	204	203	0.53	
3Co/SiO ₂	3.3	294	282	0.91	

Table S1 Textural properties and Co content of cobalt-based catalysts using different supports.

^a Co content was determined by XRF analysis;

^b Specific surface area calculated by the BET method;

 $^{\rm c}$ Total pore volume measured at P/P_0 = 0.99.

Table S2 Calculated proportions of CoO _x nanoparticles and nanoclusters on nCo/S1	catalysts
based on H ₂ -TPR hydrogen consumption.	

Catalysts	Co content ^a (wt.%)	CoO _x nanoparticles ^b (%)	CoO _x nanoclusters ^b (%)
5Co/S1	5.4	97	3
1Co/S1	1.1	26	74

^a Co content was determined by XRF analysis;

 $^{\rm b}$ Relative contents of ${\rm CoO}_x$ nanoparticles and nanoclusters were estimated by deconvoluting the H_2-TPR profiles.

Table S3 Quantita	tive XPS analysis of	surface cobalt oxi	dation states in	nCo/S1 catalysts.
	Catalysts	Co ³⁺ (%)	Co ²⁺ (%)	
	5Co/S1	49	51	
	1Co/S1	17	83	

Catalysts	${ m S_{BET}}^{ m a}$ (m^2/g)	S _{ext} (m ² /g)	V _{total} ^b (cm ³ /g)	V _{micro} (cm ³ /g)	
3Co/S1	432	124	0.30	0.12	
3Co/S1-250 h	260	58	0.20	0.08	
3Co/S1-250 h-C	413	144	0.27	0.11	

Table S4 Texture properties of 3Co/S1, 3Co/S1-250 h and 3Co/S1-250 h-C.

^a Specific surface area calculated by the BET method;

^b Total pore volume measured at $P/P_0 = 0.99$.

Catalysts	Co content ^a (wt.%)	S_{BET}^{b} (m^2/g)	S_{ext} (m ² /g)	V _{total} ^c (cm ³ /g)	V _{micro} (cm ³ /g)
S1		431	128	0.30	0.12
3Co/S1	3.3	432	124	0.30	0.12
3Co/S1-AW-1.7	2.7	373	170	0.27	0.11
3Co/S1-AW-2.5	1.9	354	199	0.29	0.08

 Table S5 Textural properties and Co content of 3Co/S1 catalysts before and after acid treatment.

^a Co content was determined by XRF analysis;

^b Specific surface area calculated by the BET method;

 $^{\rm c}$ Total pore volume measured at P/P_0 = 0.99.

 Table S6 Quantitative XPS analysis of surface cobalt oxidation states in 3Co/S1 catalysts before and after acid treatment.

Catalysts	Co ³⁺ (%)	Co ²⁺ (%)			
3Co/S1	43	57			
3Co/S1-AW-1.7	40	60			
3Co/S1-AW-2.5	33	67			

Supplementary Figures

Fig. S1. N₂ adsorption and desorption isotherms of Co-based catalysts with different supports.

Fig. S2. SEM images of (A) 3Co/S1, (B) 3Co/USY, (C) 3Co/SSZ-13, (D) 3Co/SiO₂ and (E) 3Co/ γ -Al₂O₃.

Fig. S3. FTIR spectra of adsorbed *n*-butanol on 1Co/S1 and 5Co/S1.

Fig. S4. *n*-Butanol conversion, product distribution, and *n*-butylamine yield over 3Co/S1 catalyst under varying reaction conditions.

Reaction conditions: (A) T = 200 °C, WHSV = 1 h⁻¹, molar ratio H₂: *n*-butanol = 9; (B) T = 200 °C, molar ratio H₂: NH₃: *n*-butanol = 9:8:1; (C) molar ratio H₂: NH₃: *n*-butanol = 9:8:1, WHSV = 1.5 h⁻¹; (D) T = 180 °C, molar ratio NH₃: *n*-butanol = 8:1, WHSV = 1.5 h⁻¹.

Fig. S5. N₂ adsorption and desorption isotherms of 3Co/S1, 3Co/S1-250 h and 3Co/S1-250 h-C.

Fig. S6. XRD patterns of 3Co/S1, 3Co/S1-250 h and 3Co/S1-250 h-C.

Fig. S7. XRD patterns of 3Co/S1 catalysts before and after acid treatment and support S1.

Fig. S8. N₂ adsorption and desorption isotherms of 3Co/S1 catalysts before and after acid treatment and support S1.

Fig. S9. H₂-TPR profiles of 3Co/S1 catalysts before and after acid treatment.

Fig. S10. H₂-TPR profiles of 3Co/S1 catalyst before and after reduction. Reduction condition: 500 °C in the fix bed for 2 h with 50 ml/min of H₂.

Fig. S11. Effect of reduction temperature on *n*-butanol conversion and product distribution over 3Co/S1 catalyst.
Reaction conditions: T reaction = 180 °C; molar ratio H₂: NH₃: *n*-butanol = 4:8:1;

WHSV = $1.5 h^{-1}$.