Supplementary Information (SI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2025

Supporting Information

Enhanced Photoelectrochemical Water Splitting of In-Doped TiO₂

Nanorods with Oxygen Vacancies: Synergistic Effects of Band

Structure and Charge Carrier Dynamics Engineering

Suyi Yang ^a, Baoyuan Wang ^a, Yan Zhang ^a, Chaofan Guo ^a, Sheng

Yang ^a, Liting Wei ^a, Jinzhan Su ^{a*} and Liejin Guo ^a

^aInternational Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China

E-mail: j.su@mail.xjtu.edu.cn

*Corresponding author.

E-mail: j.su@mail.xjtu.edu.cn

1.1 Materials for the experiments

Fluorine-doped tin oxide substrates (FTO) coated glasses, acetone, ethanol, deionized water, acetylacetone, tetrabutyl titanate, hydrochloric acid and Indium chloride (InCl₃).

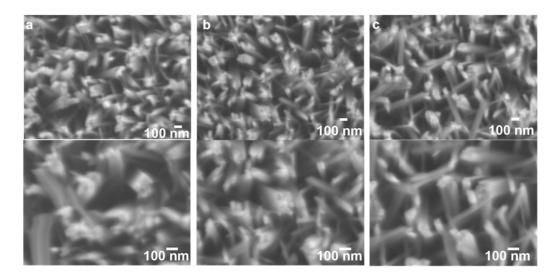
1.2 Preparation of TiO₂ seed layer by spin-coating method

Add 0.015M acetylacetone, 0.05M tetrabutyl titanate and 0.05M ethanol to 50ml deionised water to prepare the spin coating solution. A clean 1.5*3 cm FTO is fixed on the spin coater at 2000 rpm for 60 s and spin coated three times. After spin coating, the FTO is removed and heated at 60 °C for 10 minutes on a heating table. The sample was then transferred to a muffle furnace and annealed at 450 °C for 30 min. After cooling, the sample was removed and repeatedly rinsed with deionised water and heated on a heating table at 60 °C for 10 min.

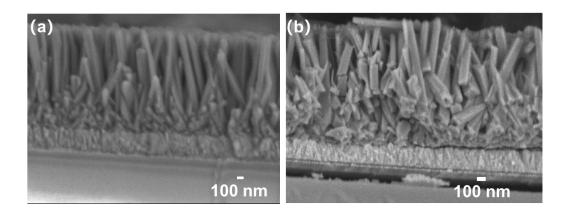
1.3 Preparation of TiO₂ NRs

To 30 ml of deionised water add 30 ml of hydrochloric acid and 0.05 M tetrabutyl titanate. Transfer the FTO with the TiO₂ seed layer to the above solution, placing the side with the seed layer towards the bottom. Transfer to an oven and hold at 160 °C for 6 h. After completion of hydrothermal heating remove the FTO and wash repeatedly, dry by heating at 60 °C on a heating table and then transfer to a muffle furnace to anneal at 450 °C for 2 h.

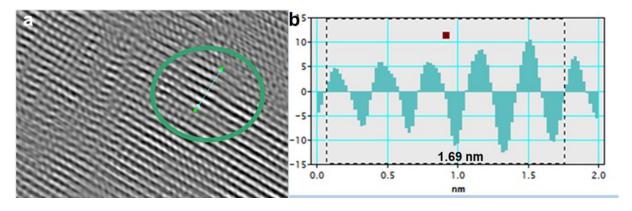
1.4 Preparation of In/TiO₂ nanorod arrays (NRs)


To 30 ml of deionised water add 26 ml of hydrochloric acid with tetrabutyl titanate and indium chloride in the ratios 2:10, 4:10, 6:10 and 9:10. Transfer the FTO with the TiO₂ seed layer to the above solution, placing the side with the seed layer towards the bottom. Transfer to an oven and hold at 160 °C for 6 h. After completion of hydrothermal heating remove the FTO and wash repeatedly, dry by heating at 60 °C on a heating table and then transfer to a muffle furnace to anneal at 450 °C for 2 h.

1.5 Characterization


The scanning electron microscope (SEM, JEOL JSM-7800 F) and transmission electron microscopy (TEM, JEOL JEM-2100) were utilized to study the morphology of the prepared samples. An X-ray diffractometer (PANalytical X'pert PRO, Cu Kα irradiation (λ = 0.154184 nm)) was employed to study the crystal structure of the hybrid films. Raman spectra (Jobin Yvon LabRAM Solei) were collected using a confocal laser Raman spectrometer equipped with a wavelength of 532 nm for STR500.The chemical elements and states of the films were recorded with an X-ray photoelectron spectrometer (XPS, AXIS ULtrabld) using Al Ka (1486.6 eV) radiation as X-ray source and calibrated by C 1s (284.8 eV). A double-beam UV 4100 UV–vis-NIR spectrophotometer was used to investigate the UV–vis absorption spectra of the hybrid structure films. The PL spectra was obtained by using a FLS 980 fluorescence spectrophotometer at room temperature.

1.6 PEC measurements


The PEC measurements of photoanodes were performed using an electrochemical workstation (CHI 760E) in a standard three-electrode system. An as-obtained photoanode working electrode, a saturated Ag/AgCl reference electrode and a Pt foil counter electrode were used. A 0.5 M Na₂SO₄ buffer solution (pH = 6.8) was used as the electrolyte. The intensity density of simulated sunlight is controlled at 100 mW cm⁻² by a 350 W Xenon lamp with an AM 1.5 G filter. All photoanodes were illuminated by simulated sunlight through the sample side (i.e., a front illumination). The tested area of the photoanode was about 0.196 cm². Current density-potential and linear sweep voltammograms measurements were performed using the scan rate of 20 mV s⁻¹. The tested cyclic voltammetry of the photoanode at scan rates from 20 mV/s to 200 mV/s.

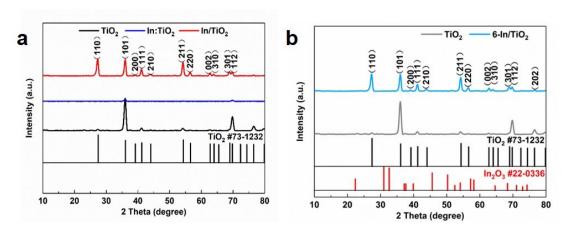

Figure S1. Low- and high-magnification SEM images of 2-In/TiO₂ NRs (a), 4-In/TiO₂ NRs(b) and 9-In/TiO₂ NRs(c).

Figure S2. Cross-sectional SEM image of (a) pure TiO_2 NRs and (b) 6-In/ TiO_2 NRs.

Figure S3. (a,b) IFFT image of 6-In/TiO₂ NRs.

Figure S4. (a)XRD patterns of bare TiO_2 NRs, 6-In: TiO_2 and 6-In/ TiO_2 NRs;(b) XRD patterns of pure TiO_2 NRs and 6-In/ TiO_2 NRs .

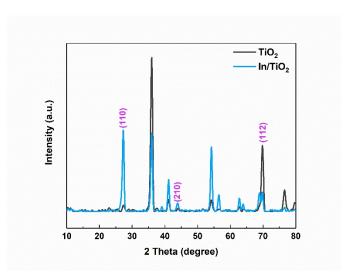


Figure S5. XRD patterns of pure TiO_2 NRs and $6\text{-In/Ti}O_2$ NRs

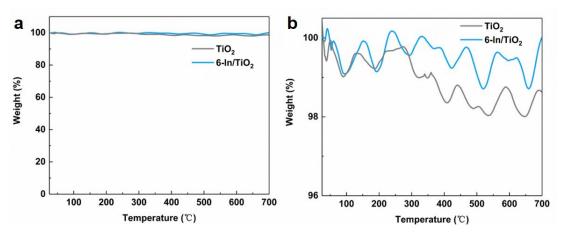
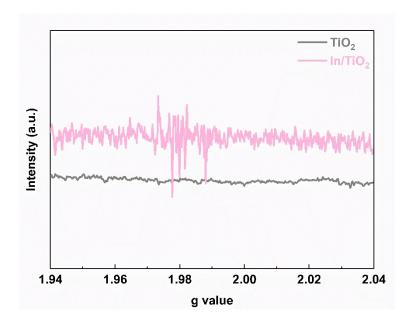
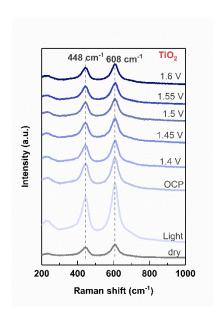




Figure S6. Thermogravimetric curves of TiO₂ NRs and 6-In/TiO₂ NRs.

Figure S7. EPR spectrum of bare TiO_2 and 6-In/ TiO_2 nanorod arrays.

Figure S8. Operando Raman spectra of pure TiO_2 NRs under various applied potentials vs RHE.

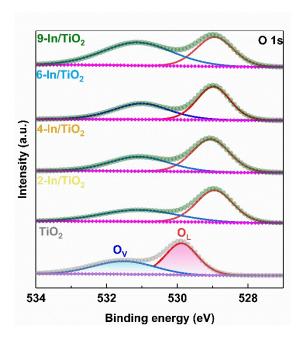


Figure S9. O 1s spectrum of bare TiO₂ and In-doped In/TiO₂ nanorod arrays.

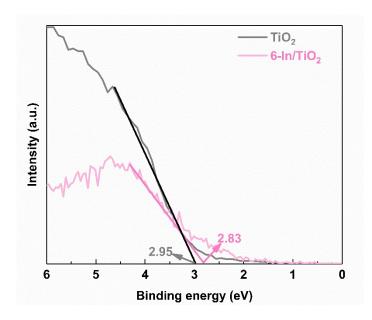


Figure S10. High-resolution VB XPS spectra of bare TiO₂ NRs and 6-In/TiO₂

NRs.

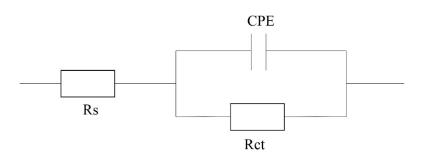
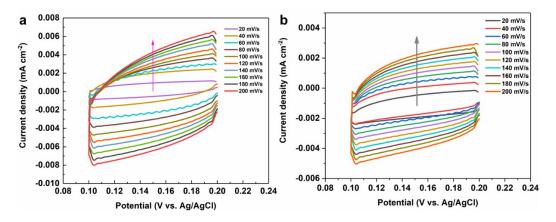



Figure S11. Simplified equivalent circuit used to fit EIS data in Nyquist plots.

Figure S12. Cyclic voltammetry curves of the (a) 6-In/TiO₂ and (b) bare TiO₂

electrodes from 20 to 200 mV/s.

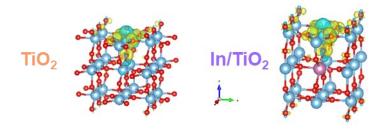


Figure S13. Differential charge density for pure TiO₂ NRs and 6-In/TiO₂ NRs.

Table S1. O_V/O_L ratio of different samples.

Sample	O_V/O_L
TiO ₂	0.728:1
2-In/TiO ₂	0.753:1
4-In/TiO ₂	0.795:1
6-In/TiO ₂	0.812:1
9-In/TiO ₂	1.479:1

Table S2. In/Ti atomic ratio of different samples.

Sample	In/Ti	
TiO ₂	0	
2-In/TiO ₂	0.64%	
4-In/TiO ₂	2.72%	
6-In/TiO ₂	3.4%	
9-In/TiO ₂	6.15%	

Table S3. Fitted values of PL decay kinetics of pure TiO_2 and $6\text{-In}/TiO_2$

Sample	B_1	$\tau_l(ns)$	B_2	$\tau_2(ns)$	τ (ns)
TiO ₂	2182.2	1.0516	226.7	5.2279	2.4738
6-In/TiO ₂	2018.4	0.9491	252.7	4.7163	2.3940

Table S4. Fitted values of EIS data of different samples.

Sample	$R_s(\Omega)$	CPE(μF)	$R_{ct}(\Omega)$
TiO ₂	105.9	9.7	5593
2-In/TiO ₂	139.7	5.0	4155
4-In/TiO ₂	108.3	5.3	3380
6-In/TiO ₂	84.2	13.3	2340
9-In/TiO ₂	106.4	2.1	5611