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1. Gerneral Information

1.1 Experimental Details
The 'H, 3C{*H} NMR spectra are reported by using a JEOL ECS-400 spectrometer (operating at
400 MHz for *H and 100 MHz for 3C{*H}). All chemical shifts for *H-NMR and 3C{*H}-NMR
spectra are given in parts per million (ppm) relative to the signals for CDCl; solvent, i.e., 7.25
ppm for 'H-NMR and 77.2 ppm for 13C{*H}-NMR spectra. 3C{*H}-NMR spectra are single-pulse
decoupled gated NOE. The frequency of the coupling constants (J) is stated in hertz (Hz).
HRMS spectra are recorded by using a G6546A Q-Tof spectrometer (Agilent) in methanol at

room temperature.

1.2 Chemicals and reagents
All the reactants (internal alkynes) specified in the manuscript were synthesized using the
approaches described later. The rest of the reagents, chemicals, and solvents are bought from
the best commercial suppliers in the country. Finar silica gel was used for the column
chromatography (100-200 mesh). All the reactions were monitored using Merck TLC Silica gel
60 F254 precoated aluminium sheets for thin-layer chromatography (TLC). The materials
obtained from commercial suppliers were used directly without further purification. All of the
reactions have been performed in reaction tubes with a screw-cap, and before each usage,
the magnetic stirring bar was cleaned in an acid bath. The reaction tubes were filled in the

open air.

1.3 Computational Details
All the calculations in the current study were performed using the Gaussian 09 program.?
Stationary points such as reactants, products, intermediates, and probable transition states
were optimized in the condensed phase employing Becke’s three-parameter hybrid
correlation functional by Lee-Yang-Parr (B3LYP). Two basis sets have been utilized, viz.,
LANL2DZ for transition metal (Fe) and 6-311G** for the rest of the atoms.? Integral Equation
Formulism Polarizable Continuum Model (IEFPCM), which is reformulated dielectric PCM
(DPCM), has been used to represent statistically averaged solvent, leading to meaningful

results.? Further, frequency calculations were carried out to characterize the nature of those
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stationary points and to evaluate the thermodynamic terms and molecular partition
functions. The transition states were pointed out by their distinguished imaginary frequency,
characteristic of first-order saddle-points on the potential energy surface. The 3D-structures

were visualized using GaussView5.0 software* and Chemcraft®.

2. General procedure for the synthesis of internal alkynes

21 sonogashira Coupling®

To a mixture of aryl bromide/iodide (1.0 mmol), K,CO; (2.0 mmol), acetylene (1.2 mmol), and
N, N-dimethylacetamide (DMA, 1.5 mL), the NHC-Pd (ll) full pincer catalyst (12 mg, 0.02 mmol)
was added. The reaction mixture was heated at 40 °C for 5 h with constant stirring. The
resulting reaction mixture was allowed to cool down at room temperature, and the organic
layer was separated by solvent extraction in ethyl acetate and water. After drying the organic
layer on sodium sulphate and concentrating over a rotary evaporator, the desired product
was separated by column chromatography using hexane/ethyl acetate as eluent.

- Pd-NHC Complex Q — Q
I+ = K,CO5, DMF —

40°C,5h

Synthesis of full pincer selanated NHC-Pd (ll) Complex®: Full pincer ligand and its Pd(Il)

complex was synthesized through the earlier disclosed method.

a
_ >
|~’ N
Ph,Se, + Q — N\r
C
NQ/N\/\CI . o N—Pld_Se\
< Cl Ph

NHC-Full Pincer Complex
Scheme S1: Synthesis of tridentate selanated NHC ligand and Pd (II) complex, (a) Diphenyl
diselenide, NaBH,, reflux, EtOH, 15 min, N, atm; (b) Add 1-(2-chloroethyl)-1H benzimidazole,
reflux; (c) Add N-benzyl-2-chloroacetamide, Toluene, N, atm, reflux, 8 h (d) (CH3CN),PdCl,,
DMF, N, atm, 90 min.
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3. General Procedure for Catalytic Semi-Hydrogenation of Acetylenes

In a reaction tube equipped with a magnetic stirring bar, a mixture of 1.0 mmol of internal
acetylene, 0.5 mmol of potassium carbonate base, 0.4 mmol of TBAB, and 20.0 mol% of Fe(CO)s
was stirred at 110 °C for 8 h in aqueous medium (using DI water). Upon completion, the mixture
was cooled to room temperature and transferred to a separatory funnel for solvent extraction
with ethyl acetate and water. Then, it was dried over anhydrous sodium sulfate, filtered, and
concentrated under reduced pressure. The crude product was purified by column
chromatography using hexane/ethyl acetate to give the pure product as a white solid. The purified

product was characterized using NMR spectroscopy.

Fe(CO)s (20 mol%) H
Q — O K,CO; (0.5 mmol) \
TBAB (0.4 mmol), H,O O

1a 110°C, 8 h H
2a

4. Control Experiments

4.1 Radical Scavenger Experiment
The addition of radical scavengers (TEMPO or BHT) did not significantly affect the yield of the
product, and no intermediate adducts were observed, indicating that the reaction does not

proceed via a free radical pathway.

Fe(CO)5 (20 mol%) H
Q - O K,CO; (0.5 equiv) Q \
— TBAB (0.4 equiv), H,0 O
110°C, 8 h H
TEMPO/BHT (2 equiv) 20, 79%

4.2 Isotopic Labeling Experiment
A deuterium labelling experiment was carried out using D,O as the deuterium source under
standard reaction conditions, replacing H,0. Successful incorporation of deuterium was
confirmed by "H and *C NMR characterization of the desired product, indicating the involvement

of hydrogen transfer from H,0 in the reaction mechanism.
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5. Characterization data Table S1:

Sr. No. Compound

Characterization

QO

2a
(E)-1,2-diphenylethene’

White Solid

Yield = 81%

H NMR (400 MHz, CDCl;) 6 7.45 (d, J = 7.2 Hz,
4H), 7.29 (t, J = 7.6 Hz, 4H), 7.21 - 7.18 (m, 2H),
7.04 (s, 2H).

13C NMR (101 MHz, CDCl;) 6 138.0, 132.3, 129.3,
128.3,127.2.

2. White Solid
Yield = 81%
'H NMR (400 MHz, CDCl;) 6 6.74 (t, J = 7.8 Hz,
F 1H), 6.66 (d, J = 8.4 Hz, 2H), 6.49 (t, J = 8.0 Hz,
Q \ 2H), 6.43 - 6.38 (m, 2H), 6.33 (d, J = 7.6 Hz, 2H),
O 6.28 - 6.17 (m, 2H).
13C NMR (100 MHz, €DCl;) 6 160.2, 157.7, 135.7,
2b 0 132.3 (d, J = 4.8 Hz), 127.2, 126.4, 125.4 (d, J =
(E)-1-fluoro-2-styrylbenzene
3.8 Hz), 125.1,123.6 (d, J=12.1 Hz), 122.6 (d, /=
3.7 Hz),119.3(d, /=3.9 Hz), 114.2 (d, /= 21.3 Hz)
3. White Solid
Yield = 83%
1H NMR (400 MHz, CDCl5) & 7.95 (d, J = 8.4 Hz,
2H), 7.58 (d, J = 8.4 Hz, 2H), 7.53 (d, J = 8.0 Hz,
Q \ 2H),7.38 (t,/=7.4 Hz, 2H), 7.29 (t,/ = 7.4 Hz, 1H),
O COCH; 7.22 (d, J = 5.6 Hz, 1H), 7.12 (d, J = 16.0 Hz, 1H),
2.60 (s, 3H).
2 ; 13C NMR (100 MHz, CDCl;) 6 196.7, 141.2, 135.9,
(E)-1-(4-styrylphenyl)ethan-1-one
135.1, 130.6, 128.0, 128.0, 127.5, 126.6, 126.0,
125.7, 25.8.
4. White solid
Yield = 81%

H NMR (400 MHz, CDCl;) 6 7.60 (q, J = 8.4 Hz,
4H), 7.53 (d, J = 7.6 Hz, 2H), 7.38 (t, J = 8.0 Hz,
2H), 7.31 (d, J = 7.2 Hz, 1H), 7.21 (d, J = 16.4 Hz,
1H), 7.08 (d, J = 16.4 Hz, 1H).
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O\ Crar

2d
(E)-4-styrylbenzonitrile®

13C NMR (100 MHz, CDCl;) 6 140.8, 135.3, 131.5,
131.4, 127.9, 127.7, 125.9, 125.9, 125.7, 118.1,
109.6.

O e

2e
(E)-1-chloro-4-styrylbenzene’

White Solid

Yield = 84%

'H NMR (400 MHz, CDCl5) & 7.43 (d, J = 7.6 Hz,
2H), 7.36 (d, J = 8.4 Hz, 2H), 7.31 - 7.26 (m, 4H),
7.20 (t,J=7.6 Hz, 1H), 7.01 (d, J/ = 16.4 Hz, 1H),
6.96 (d, J = 16.4 Hz, 1H).

13C NMR (100 MHz, CDCl;) § 136.6, 135.4, 132.8,
128.9, 128.4,128.3,127.5,127.3, 126.9, 126.1.

C

\CHO

2f
(E)-4-styrylbenzaldehyde10

White solid

Yield = 83%

'H NMR (400 MHz, CDCl;) 6 9.86 (s, 1H), 7.73 (d,
J=8.4Hz, 2H), 7.51 (d, J = 8.8 Hz, 2H), 7.41 (d, J
= 8.0 Hz, 2H), 7.28 (d, J =7.2 Hz, 2H), 7.19 (t, J =
7.4 Hz, 1H), 7.12 (d, J = 14.0 Hz, 1H), 7.00 (d, J =
16.8 Hz, 1H).

13C NMR (100 MHz, CDCl;) § 191.1, 142.8, 135.9,
134.7, 131.6, 129.6, 128.3, 127.9, 126.7, 126.3,
126.3.

O\ o

2g

(E)-1-methoxy-4-styrylbenzene’

White solid

Yield = 85%

1H NMR (400 MHz, CDCl;) & 7.44 (d, J = 7.2 Hz,
2H), 7.41 (d, J = 8.8 Hz, 2H), 7.29 (t, J = 7.6 Hz,
2H), 7.18 (t, J = 7.2 Hz, 1H), 7.02 (d, J = 16.4 Hz,
1H), 6.92 (d, J = 16.4 Hz, 1H), 6.85 (d, J = 8.8 Hz,
2H), 3.78 (s, 3H).

13C NMR (100 MHz, CDCl;) § 158.9, 137.3, 129.8,
128.3, 127.8, 127.3, 126.8, 126.2, 125.9, 113.8,
55.0.

Yellowish solid

Yield = 82%

!H NMR (400 MHz, CDCl;) 6 7.44 (d, J = 7.6 Hz,
2H), 7.32 (t, J = 7.4 Hz, 2H), 7.24 - 7.15 (m, 2H),
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O
2h

(E)-2-styrylthiophene’

7.16 (d, J = 4.8 Hz, 1H), 7.04 (d, J = 3.6 Hz, 1H),
6.97 (m, 1H), 6.91 (d, J = 16.0 Hz, 1H).

13C NMR (100 MHz, CDCl5) 6 142.7, 136.8, 128.5,
128.2, 127.4, 126.1, 126.0, 124.2, 121.6.

9. Yellow solid
\ N= Yield = 80%
<:> \_< > H NMR (400 MHz, CDCls) & 8.60 (d, J = 4.4 Hz,
\_7 1H), 7.70 - 7.66 (m, 2H), 7.62 - 7.57 (m, 2H), 7.42
2 -7.35 (m, 3H), 7.29 (t, J = 7.4 Hz, 1H), 7.21 - 7.14
(15)-2-styrylpyridine8 (m, 2H).
13C NMR (100 MHz, CDCl5) 6 149.2, 147.5, 136.9,
136.9, 136.4, 133.5, 133.1, 128.7, 128.4, 127.1,
122.1.
10. White solid
Yield = 80%
@_\_ IH NMR (400 MHz, CDC5) & 7.42 (d, J = 7.2 Hz,
\ SiMe, 2H), 7.31(t,J = 7.4 Hz, 2H), 7.20 (t, J = 6.6 Hz, 1H),
2j 6.85 (d, J = 19.2 Hz, 1H), 6.47 (d, J = 19.2 Hz, 1H),
(E)-trimethyl(styryl)silane!! 0.14 (s, 9H).
13C NMR (100 MHz, CDCl5) § 145.3, 140.1, 131.3,
130.1, 129.7, 128.1, 0.5.
11. Orange solid
Yield = 82%
©_\\_@ 1H NMR (400 MHz, CDCls) & 7.43 (d, J = 7.6 Hz,
e 2H), 7.33 (t, J = 7.4 Hz, 2H), 7.23 (d, J = 8.8 Hz,
<> 1H), 6.87 (d, J = 16.4 Hz, 1H), 6.70 (d, J = 16.0 Hz,
2K 1H), 4.46 (s, 2H), 4.28 (s, 2H), 4.14 (s, 5H).
(E)-styrylferrocene!? 13C NMR (100 MHz, €DCl;) 6 138.1, 128.8, 127.1,
126.9, 126.2, 125.9, 83.5, 69.4, 69.2, 67.0.
12. Orange solid
Yield = 81%

21

(E)-l-(4-(2-(Ferr0cenyl)vinyl)phenyl)ethan-l-one12

H NMR (400 MHz, CDCl;) 6 7.91 (d, J = 8.4 Hz,
2H), 7.48 (d, J = 8.4 Hz, 2H), 7.02 (d, J = 16.0 Hz,
1H), 6.70 (d, J = 16.0 Hz, 1H), 4.48 (t, J = 1.8 Hz,
2H), 433 ((t, J = 1.8 Hz, 2H), 4.14 (s, 5H), 2.58 (s,
3H).

13C NMR (100 MHz, CDCl,) 6 197.1, 142.1, 134.7,
130.1, 128.5,125.2, 124.2, 81.9, 69.1, 68.9, 66.8,
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26.1.

13. White solid
Q Yield = 80%
\ O 1H NMR (400 MHz, CDCl5) § 7.92 (d, J = 16.0 Hz,
o 1H), 7.86 (d, J = 9.7 Hz, 1H), 7.65 (d, J = 8.0 Hz,
—d 1H), 7.50 - 7.41 (m, 3H), 7.31 - 7.21 (m, 3H), 7.19
2m (d, J = 6.8 Hz, 1H), 6.94 (d, J = 16.4 Hz, 1H), 3.85
methyl (E)-2-styrylbenzoate'3 (s, 3H).
14. White solid
Yield = 83%
Q \ 1H NMR (400 MHz, CDCl5) 6 9.89 (s, 1H), 7.77 (d,
O CHO J=8.4 Hz, 2H), 7.54 (d, J = 8.4 Hz, 2H), 7.36 (d, J
- = 8.4 Hz, 2H), 7.17 - 7.10 (m, 3 Hz, 3H), 7.00 (d, J
(E)-4-(4-methylstyryl)benzaldehyde'* =16.4 Hz, 1H), 2.29 (s, 3H).
13C NMR (100 MHz, CDCl;) § 191.7, 143.7, 138.6,
135.1, 133.8, 132.2, 130.3, 129.6, 126.9, 126.8,
126.3, 21.4.
15. White solid
Yield = 84%
1H NMR (400 MHz, CDCl;) § 7.84 (d, J = 8.4 Hz,
Q \ 2H), 7.47 (d, J = 8.4 Hz, 2H), 7.34 (d, J = 8.0 Hz,
O COCH, 2H), 7.14 (d, J = 13.6 Hz, 1H), 7.09 (d, J = 6.8 Hz,
2H), 6.98 (d, J = 16.0 Hz, 1H), 2.50 (s, 3H), 2.28 (s,
2q 3H).
(E)-1-(4-(4-methylstyrylphenyl) 13C NMR (100 MHz, CDCl) 6 196.6, 141.3, 137.5,
ethan-1-one 134.7, 133.0, 130.5, 128.6, 128.0, 125.9, 125.5,
125.5, 25.7, 20.4.
16. White solid
Yield = 82%
IH NMR (400 MHz, CDCl;) § 7.56 (d, J = 8.4 Hz,
Q \ 2H), 7.50 (d, J = 8.4 Hz, 2H), 7.36 (d, J = 8.0 Hz,
O CN 2H), 7.12 (t, J = 8.0 Hz, 3H), 6.97 (d, J = 16.4 Hz,
- 1H), 2.31 (s, 3H).
(E)-4-(4-methylstyrylbenzonitrile'® 13C NMR (100 MHz, CDCl;) § 140.9, 137.6, 132.3,
131.3, 131.2, 128.4, 125.7, 125.5, 124.5, 117.9,
109.1, 20.1.
17. White solid
Yield = 85%

1H NMR (400 MHz, CDCls) & 7.40 (d, J = 8.0 Hz,

510




QO

2s
(E)-1,2-di-p-tolylethene®

4H), 7.16 (d, J = 8.0 Hz, 4H), 7.04 (s, 2H), 2.35 (s,
6H).

13C NMR (100 MHz, CDCl;) 6 137.2, 134.7, 129.3,
127.6,126.3, 21.2.

18. White solid
Q Yield = 86%
CF3 1H NMR (400 MHz, CDCls) § 7.54 (s, 4H), 7.39 (d,
J = 8.0 Hz, 2H), 7.18 (d, J = 20.0 Hz, 1H), 7.14 -
2 7.10 (m, 2H), 7.02 (d, J = 16.4 Hz, 1H), 2.33 (s,
(E)-1-methyl-4-(4-(trifluoromethyl) 3H).
styryl)benzene'®
13C NMR (100 MHz, CDCl;) § 140.8, 138.1, 133.6,
130.9, 129.3, 129.0, 128.6, 126.5, 126.2, 125.4
(9, =4.0Hz), 122.7, 21.1.
19. White solid
Yield = 79%
O 'H NMR (400 MHz, CDCls) & 7.55 (d, J = 1.2 Hz,
/ O / 1H), 7.53 (s, 4H), 7.38 (t, J = 7.4 Hz, 5H), 7.29 (t, J
Q =1.2 Hz, 1H), 7.27 (s, 3H), 7.14 (s, 2H), 7.13 (s,
- 2H).
1.4-di((E)-styrylbenzene"? 13C NMR (100 MHz, CDCl5) § 137.3, 136.7, 128.7,
128.5,128.2, 127.6, 126.8, 126.5.
20. White solid,
D Yield = 75%
14 NMR (400 MHz, CDCl;) & 7.46 (d, J = 1.2 Hz,
o 2H), 7.44 (d, J = 0.8 Hz, 2H), 7.29 (t, J = 7.4 Hz,
5H), 7.21 (t, J = 1.2 Hz, 1H).
3a-d 13C NMR (100 MHz, CDCl;) § 138.0, 129.4, 129.3,
(E)-1,2-diphenylethene-1,2-d, 128.4,127.3 (t, J = 2.4 Hz).
21.

3b-d
(E)-4-(2-phenylvinyl-1,2-d,)aniline

White Solid

Yield = 79%

'H NMR (400 MHz, CDCl;) § 7.43 - 7.40 (m, 2H),
7.27 -7.24 (m, 3H), 7.23 - 7.19 (m, 2H), 6.54 (d, J
= 8.8 Hz, 2H), 3.72 (s, 2H).

S11




22.

O~

3c-d

l (E)-1-(4-(2-phenylvinyl-1,2-d,)phenyl)

ethan-1-one-2,2,2-d;

A~

16

White Solid

Yield =77%

H NMR (400 MHz, CDCl;) 6 7.91 (d, J = 8.8 Hz, 2
H), 7.52 (dd, /= 19.6, 8.4 Hz, 4 H), 7.34 (t, /= 8.0
Hz, 2 H), 7.26 (t, J = 8.0 Hz, 1H).

13C NMR (101 MHz, CDCl;) 6 197.7, 142.0, 136.7,
136.0, 129.0, 128.9, 128.4, 126.9, 126.6 - 25.7
(m).
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7. Copies of NMR Spectra
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8. Copies of HRMS spectra to support mechanism
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Figure S22: HRMS of intermediate D
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Figure $S24: HRMS of intermediate product (E-stilbene)
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