Supplementary Information (SI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2025

Supporting Information

Edge sites on TiO₂ as aKey Type of Photocatalytically Active Site

Longxia Wu,^{a,b} Zongfang Wu,*c Zhengming Wang, a Hong Xu, a Peng Chai, a Junjie Shi a and Weixin Huang *a

- ^a Key Laboratory of Precision and Intelligent Chemistry, iChEM, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, P. R. China.
- ^b School of Materials Science and Engineering, Hefei Institute of Technology, Hefei 230601, China
- ^c Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, P. R. China.
- * Correspondence author: wzfang@ustc.edu.cn; huangwx@ustc.edu.cn

Table of contents

EXPERIMENTAL SECTION

Figure S1: Ar 2p XPS spectra of argon ion sputtered and clean TiO₂(110) surfaces.

Figure S2. Peak-fitted Ti 2p XPS spectra of different surfaces.

Figure S3. Ti 2p XPS spectra after an exposure of 50 L of O_2 on the r-Ti $O_2(110)$ -1000 K surface at 110 K followed by annealing at elevated temperatures.

Figure S4. TPD spectra of CO₂ with different coverage on different surfaces.

Figure S5. TPD spectra of CO with different coverage on different surfaces.

Figure S6. TPD spectra of O₂ and corresponding CO₂ TPD spectra on r-TiO₂(110)-800 K surfaces.

Figure S7. TPD spectra of 50 L O₂ on different surfaces.

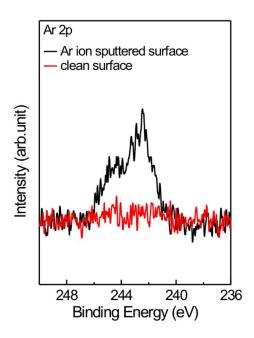
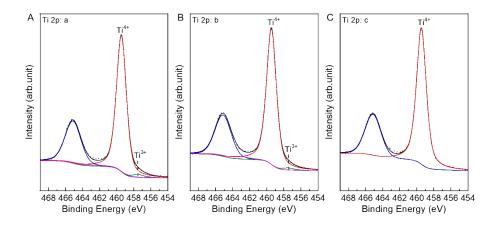
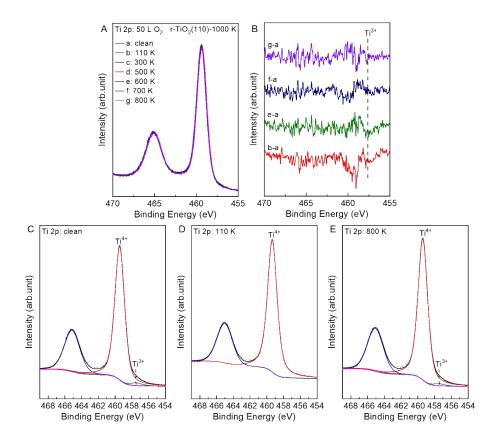
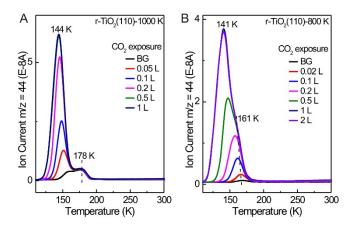

Figure S8. TPD spectra of 1 L CO₂ on different surfaces with UV light illumination.

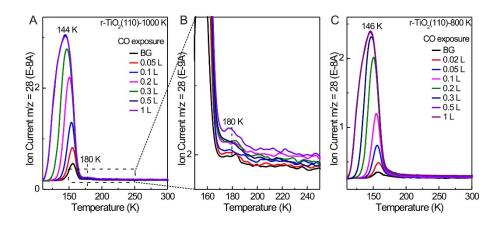
Figure S9. TPD spectra of 1 L CO on different surfaces with UV light illumination.

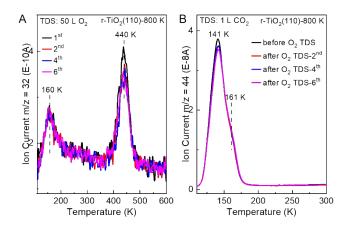

EXPERIMENTAL SECTION

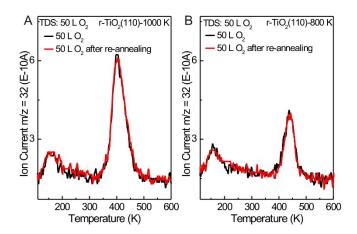
Experimental section. The experiments were performed in a stainless-steel ultrahigh vacuum (UHV) system equipped with differentially-pumped thermal desorption spectroscopy (TPD), low energy electron diffraction (LEED), X-ray photoelectron spectroscopy (XPS), and ultraviolet photoelectron spectroscopy (UPS). The base pressure for the sample chamber is 1- 2×10^{-10} Torr. A rutile TiO₂(110) single crystal (8 mm \times 8 mm \times 1 mm) purchased from MaTeck was mounted onto a Ta support plate (8 mm × 8 mm × 1 mm) by a mixture of high-temperature alumina-based inorganic adhesive (Aremco 503) and graphite powder (99.9995%, Alfa Aesar China Co., Ltd.). Via two Ta wires spot-welded to its backside, the sample was resistively heated and cooled. The temperature was controlled and measured between 110 and 1273 K by a chromel-alumel thermocouple spot-welded to the backside of the sample plate. The rutile TiO₂(110) surface was first cleaned by repeated cycles of Ar ion sputtering at 1 kV for 10 min, annealing in oxygen at 750 K for 10 min, and vacuum annealing at 1000 K for 10 min until XPS detected no contaminants other than argon. The rutile TiO₂(110) surface was further cleaned before experiments by repeated cycles of annealing in oxygen at 700 K for 30 min and vacuum annealing at 1000 K for 10 min until XPS did not detect the contaminants of argon.CO (>99.99%), CO₂ (>99.999%), and O₂ (>99.999%), purchased from Nanjing ShangYuan Industry Factory, were used as received and were checked their purities by QMS before experiments. All exposures in the experiments were reported in Langmuir (1 L = 1.0×10^{-6} Torr·s) without corrections for the gauge sensitivity. During TPD measurements, the TiO₂ sample was positioned ~1 mm away from a collecting tube of a differential-pumped QMS and the heating rate is 2 K/s. XPS spectra were recorded by using Mg K α radiation (hv = 1253.6 eV) with a pass energy of 20 eV. The Ti 2p XPS spectra were peak-fitted with the XPSPEAK software (Version 4.1) using a Shirley-type background.

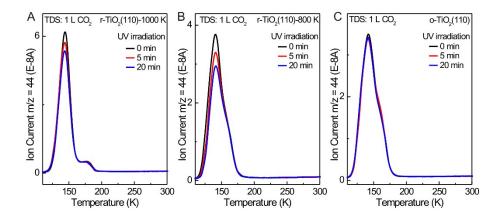

Hg irradiation was accomplished by using a 100 W high-pressure Hg arc lamp (Oriel 6281), which provides a pressure-broadened emission spectrum in the UV light region from gaseous Hg. The light irradiance of this source is found to be decreased rapidly and is only 0.05 mW/m² for the 200 nm light at a distance of 0.5 m when the light wavelength is below 250 nm. Thus the light absorption by methanol/TiO₂ in the UV light region below 200 nm can be neglected under our experimental condition. The IR portion of the emission spectrum was removed by a water filter. The Hg light was focused onto the tip of a single strand, 0.6 mm diameter fused silica fiber-optic cable directed the light through UHV-compatible feedthrough onto the rutile TiO₂(110) surface without exposure to extraneous surfaces. The Hg light resulted in the rising of crystal temperature no more than 0.5 K on TiO₂(110) at 110 K.


Figure S1. At 2p XPS spectra of argon ion sputtered and clean $TiO_2(110)$ surfaces, proving the residual argon was introduced into $TiO_2(110)$ surface after argon-ion bombardment.


Figure S2. Peak-fitted Ti 2p XPS spectra of r-TiO₂(110)-1000 K, r-TiO₂(110)-800 K, and o-TiO₂(110) surfaces. The Ti³⁺ feature is shown in the Ti 2p XPS spectra of r-TiO₂(110)-1000 K and r-TiO₂(110)-800 K surfaces. Meanwhile, the o-TiO₂(110) surface does not exhibit the Ti³⁺ feature.


Figure S3. (A) Ti 2p XPS spectra, (B) corresponding difference spectra and (C-E) Peak-fitted Ti 2p XPS spectra after an exposure of 50 L of O₂ on the r-TiO₂(110)-1000 K surface at 110 K followed by annealing at elevated temperatures. In the difference spectra, the negative peak results from the reduction of Ti⁴⁺ 2p and Ti³⁺ 2p components after an exposure of 50 L of O₂ on the r-TiO₂(110)-1000 K surface at 110 K. The negative Ti³⁺ shoulder feature does not vary upon annealing up to 600 K, and then decreases upon annealing at 700 K and further at 800 K, arising from regeneration of Ti³⁺ by high-temperature annealing. In the peak-fitted spectra, the Ti³⁺ feature disappeared after an exposure of 50 L of O₂ on the r-TiO₂(110)-1000 K surface at 110 K while we observed the Ti³⁺ feature again on the surface followed by annealing at 800 K.


Figure S4. TPD spectra of (A) r-TiO₂(110)-1000 K and (B) r-TiO₂(110)-800 K surfaces with various CO_2 coverages at 110 K.


Figure S5. (A) Normal and (B) amplifying TPD spectra of r-TiO₂(110)-1000 K surface, and TPD spectra of (C) r-TiO₂(110)-800 K surface with various CO coverages at 110 K.

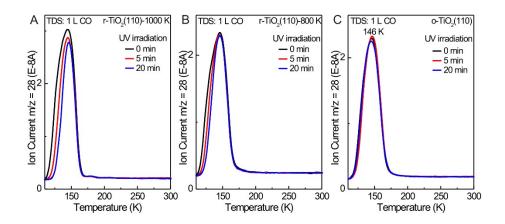

Figure S6. (A) O_2 TPD spectra of r-Ti O_2 (110)-800 K surface with repeated exposures of 50 L O_2 at 110 K. (B) CO_2 TPD spectra of r-Ti O_2 (110)-800 K surface exposed to saturated CO_2 before and after O_2 TPD experiments at 110 K.

Figure S7. TPD spectra of (A) r-TiO₂(110)-1000 K and (B) r-TiO₂(110)-800 K surfaces exposed to 50 L O₂ at 110 K after a re-annealing of the surface, proving the reproducibility of our method used to prepare both r-TiO₂(110)-1000 K and r-TiO₂(110)-800 K surfaces.

Figure S8. TPD spectra of (A) r-TiO₂(110)-1000 K, (B) r-TiO₂(110)-800 K, and (C) o-TiO₂(110) surfaces exposed to 1 L CO₂ with UV light illumination for various times at 110 K.

Figure S9. TPD spectra of (A) r-TiO₂(110)-1000 K, (B) r-TiO₂(110)-800 K, and (C) o-TiO₂(110) surfaces exposed to 1 L CO with UV light illumination for various times at 110 K.