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m EXPERIMENTAL

Photo-mediated Benzene Hydroxylation with H,0,

A mixture of all three copper complexes (0.02 mM) in H,O/CHCI; (1:5 v/v) ImL and benzene 89
pL (1 M) was added to the solution, then 307 pL of 30% H,0, was added slowly to the reaction
mixture. This solution was stirred under irradiation at 50 °C for 6 hr. Then 500 pL of ethanol was
added to convert the biphasic reaction mixture to single phase. A fraction of reaction mixture was
analyzed by reverse phase HPLC, and conversion were calculated, and products were identified
by GC-MS comparison with authentic standard compound.

Chromatographic Methods

Chromatographic separation of the various products shown in this work was performed using the
following chromatographic methods: Agilent 5977B GC/MSD equipped with an HP-5 MS
capillary column (30 m % 0.32 mm X 0.25 um); Waters Alliance system (Milford, MA) consisting
of €2695 separation module and a 2998 photodiode-array detector equipped with an column C 18

2.5um (4.6 x 50 mm).

For Hydroxylation of Substituted Benzene (GC-MS):

Rate (°C/min) Temperature (°C) | Hold time (min) Run time (min)
Initial 40 2 2
Ramp 5 50 2 6
Ramp 10 200 0 21
Inlet
Septum purge flow- 3ml/min Total flow- 259 ml/min  Split ratio- 100:1

For Hydroxylation of Anthracene and Biphenyl (GC-MS):

Rate (°C/min) Temperature (°C) | Hold time (min) Run time (min)
Initial 100 1 1
Ramp 1 15 200 0 7.67
Ramp 2 10 280 0 15.67
Ramp 3 5 310 0 21.67
Inlet
Septum purge flow- 3ml/min Total flow- 259 ml/min  Split ratio- 100:1
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For recording the data in HPLC, we follow the method below.

Sample taken = 10 pL

Time (min) | Flow (mL/min) | H,O (%) | MeCN (%)
0-2 1.00 100 0.00
4-6 1.00 80 20
6-8 1.00 70 30
8-10 1.00 60 40
10-14 1.00 50 50
14-16 1.00 40 60
16-18 1.00 30 70
18-20 1.00 20 80
20-22 1.00 10 90
22-26 1.00 0.00 100
26-30 1.00 100 0.00

Synthesis of L2 and L3. 2-phenylmalonyl dichloride was synthesis according to the reported
method.! To a solution of phenyl malonic acid (900mg, 5 mmol) in DCM (35 mL), 38 uL (0.5
mmol) of N, N-dimethylformamide (DMF) was added. oxalyl chloride (1.1 mL, 12.5 mmol) was
added carefully using a dropping funnel over a period of 30 minutes at 0 °C. After addition, the
reaction was allowed to warm to room temperature, and the reaction was kept on stirring for an
additional 4 hours to ensure a complete reaction. Then, the solvent was removed under reduced
pressure, resulting in the formation of a colorless liquid. First, 2-phenylmalonyl dichloride was
prepared by following the above procedure. Then a solution of 8-amino quinoline (500mg, 3.46
mmol) in dry THF (30 mL), triethylamine (580 uL, 4.16 mmol) was stirred under an N, atmosphere
at 0 °C, and the reaction was stirred for 15 minutes. Then the phenyl malonyl dichloride (319 uL,
2.08 mmol) pre-dissolved in 10 mL of dry THF was added dropwise at 0 °C over a period of 20
minutes. After this, the reaction mixture was brought to room temperature (RT) and was kept

overnight. After 12 hours, the reaction mixture was filtered over celite. The filtrate was then
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evaporated to dryness, then purified ligand L3 was obtained after column chromatography using

5 % Ethyl acetate/ hexane to afford a pure yellowish powder.

Synthesis of L3 was carried out by a solution of 2-methylquinoline-8-amine (500mg, 3.16 mmol)
in the presence of triethylamine (440 uL, 3.16 mmol) as a base in THF solvent, under an inert
atmosphere, at 0 °C, and the reaction was stirred for 15 minutes. Then the dimethyl malonyl
chloride (320 uL, 1.896 mmol) pre-dissolved in 10 mL of dry THF was added dropwise at 0 °C
over a period of 20 minutes. After this, the reaction mixture was brought to room temperature (RT)
and was kept overnight. Under reduced pressure, the solvent was evaporated, and the ligand was

further purified by column chromatography, and white colour powder was obtained for the ligand.

Synthesis of Cu (Il) complexes (Cull, Cul2 and CuL3). Copper complexes (Cul.l and Cul2)
were synthesized by reacting copper (II) chloride dihydrate CuCl,.2H,0O with the corresponding
amido-quinoline ligands. CuCl,.2H,0 (19 mg, 0.11 mmol) was added to a reaction mixture
containing either L1 (50.0 mg, 0.13 mmol) or L2 (50.0 mg, 0.11 mmol), triethylamine (NEts, 30
uL, 0.22 mmol), and 2 mL of dry tetrahydrofuran (THF), under a nitrogen atmosphere. The mixture
was stirred at room temperature for 6 hours. Upon completion, the solution turned dark green and
was filtered through a Celite pad. Under reduced pressure solvent was evaporated and the residue
was dissolved in DCM, layered with Hexane, then left undisturbed for crystallization, yielding
pure dark green colour crystals of the complexes within 15 days. For the synthesis of Cul3, the
same procedure was followed, except that methanol (2 mL) was used instead of THF as the solvent.

Characterization of L1, L2 and L3
HR-MS

HR-MS m/z: caled: 433.1659; found: 433.1645 (M+H)" for L2(C,7H0N40;); HR-MS m/z: calcd:
4131972, found: 413.1961 (M+H)+ for L3(C25H24N402).
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Figure S1. HR-MS Spectrum of experimental L2 and L3 (a and c) and theoretical calculated by
Isotope Distribution Calculator (b and d).

'H NMR

L1: L1: 'H NMR (400 MHz, CDCl3) § 10.93 (s, 2H), 8.84 (ddd, J = 9.0, 5.6, 1.9 Hz, 4H), 8.13
(dd, J= 8.3, 1.7 Hz, 2H), 7.56 — 7.47 (m, 4H), 7.44 (dd, J = 8.3, 4.2 Hz, 2H), 1.92 (s, 6H).

L2: 'H NMR (400 MHz, CDCl3) 5 10.98 (s, 2H), 8.85 (dd, J = 5.5, 3.7 Hz, 4H), 8.14 (dt, J = 8.3,
1.5 Hz, 2H), 7.79 (d, J = 7.6 Hz, 2H), 7.55 — 7.50 (m, 4H), 7.47 — 7.42 (m, 4H), 7.39 — 7.33 (m,
1H), 4.99 (s, 1H).

L3:'H NMR (400 MHz, CDCls) & 10.96 (s, 2H), 8.79 (t, J = 4.6 Hz, 2H), 8.00 (d, J= 8.4 Hz, 2H),
7.45 (d, J= 4.6 Hz, 4H), 7.29 (d, J = 8.4 Hz, 2H), 2.70 (s, 6H), 1.91 (s, 6H).
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3C NMR

L1: 'H NMR (400 MHz, CDCl;) 8 10.93 (s, 2H), 8.84 (ddd, J = 9.0, 5.6, 1.9 Hz, 4H), 8.13 (dd, J
= 8.3, 1.7 Hz, 2H), 7.56 — 7.47 (m, 4H), 7.44 (dd, J = 8.3, 4.2 Hz, 2H), 1.92 (s, 6H)

L2: 3C NMR (101 MHz, CDCl3) 6 167.29, 148.73, 138.98, 136.34, 135.05, 134.43, 129.38,
128.65, 128.45, 128.06, 127.33, 122.31, 121.77, 117.25, 62.90, 31.07.

L3:13C NMR (101 MHz, CDCl;) & 171.78, 157.51, 138.45, 136.36, 134.00, 126.32, 126.13,
122.52,121.71, 116.76, 53.04, 25.42, 24.10, 1.16.
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Figure S2. '"H NMR Of L1(a), L2(b) and L3(c) in CDCl,.
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Figure S3. 13C NMR of L1(d), L2(e) and L3(f) in CDCl;.

Characterization of Cu complexes

HR-MS

HR-MS m/z: calcd for CulL3: 494.0799; found: 494.0793 (M+H)" for CuL2; HR-MS m/z: calcd:
474.1112; found: 474.1132(M+H)*for CuL3.
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Figure S4. HR-MS Spectrum of experimental CuL2 and Cul.3 (a and C) and theoretical calculated
by Isotope Distribution Calculator (b and d).

UV-Vis

UV-Vis (CuL1): 392 nm (Apax); € = 8751 M-lem! in CHCls.
UV-Vis (CuL2): 372 nm (Apay); € = 5956 M-'cm! in CHCls.
UV-Vis (CuL3): 376 nm (Apay); € = 4565 M-'cm™! in CHCls.
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Figure S5. UV-Vis spectra CuL1 (0.04 mM),CuL2 (0.06 mM) and CuL3(0.06 mM) in ACN.
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Figure S6. Cyclic voltammogram of CuL2 (a), CuL3 (b) and L2 (c) 0.5 mM in DMF. Supporting
electrolyte: "BuyNPF¢ (0.1 M); Reference electrode: Ag/Ag* (0.54 V vs. NHE); Working electrode:
glassy carbon; Counter electrode: Pt wire; Scan rate: 0.05 Vs

Distortion parameters

Table S1. Crystal data and structure refinement parameters of complexes.

Compounds CulL2 Cul3

Empirical formula C,7 HisN,4,CuO, C,5sH»,N4CuO, 1[H,0]
Formula weight 494.00 492.02

Temperature (K) 298 295

Wavelength (A) 0.71073 0.71073
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Crystal system

Space group

a (A)/a ()

b (A)B(°)

c (A (°)

Volume (A?%)

Z

Density (calc) (Mg/m™)

Absorption coefficient (1) (mm)

F(000)
Crystal size (mm?)

Theta ranges for data collection

Index ranges

Reflections collected

Independent reflections

Data/restraints/parameters
Goodness-of-fit on F?

Final R indices [I>2sigma(I)]

R indices (all data)

Largest diff peak and hole (e A-3)

CCDC No.

monoclinic

P2,/c

18.9830(12)/90
10.4621(7)/ 108.076(2)
22.4265(12)/90
4234.1(5)

8

1.550

1.067

2024
0.23x0.15x0.12
1.89-26.42°

-23<=h<=23,
-13<=k<=13, -28<=I<=24

80159
8670 [R(int) = 0.0759]

8670/0/613
3.698
R1=0.1184
wR,=0.1912
R1=0.2320
wR, =0.2043
1.333 and -1.106

2491828

monoclinic

P2,/c

13.507(11)/90
13.173(15)/99.26(4)
12.659(16)/90
2223(4)

4

1.470

1.018

1020
05x05x0.5
2.173 - 26.462°

-16<=h<=15,
-16<=k<=16, -15<=I<=15

32886
4554 [R(int) = 0.0685]

4554/0/305
1.106
R1=10.0451
wR; =0.0963
R1=0.0776
wR,=0.1214
0.746 and -0.469

2477383

Table S2. Distortion parameter from Selected bond lengths (A) and bond angles (°) of CuL2
and Cul.3 complex.
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Bond Length [A]

Bond Angle [°]

Bond Length [A]

Bond Angle [°]

Cul2 Cul.2 Cul3 CulL3
1.941 83.0 1.997 83.6
[Cu(1)-N4)] [N(4)-Cu(1)-N(5)] [Cu(1)-N()] [N(D-Cu(1)-N(2)]
2.015 98.7 1.912 105.9
[Ni(1)-N(5)] [N(4)-Cu(1)-N(6)] [Cu(1)-N(2)] [N(D-Cu(1)-N(4)]
1.941 172.9 2.003 156.4
[Ni(1)-N(6)] [N(4)-Cu(1)-N(8)] [Cu(1)-N@3)] [N(1D)-Cu(1)-N@3)]
1.989 159.3 1.914 148.0
[Ni(1)-N(8)] [NG5)-Cu(1)-N(6)] [Cu(1)-N(2)] [N@2)-Cu(1)-N(4)]
91.7 98.4
[N(5)-Cu(1)-N(8)] [N(2)-Cu(1)-N@3)]
83.2 84.9

[N(6)-Cu(1)-N(8)]

[N(-Cu(1)-NG)]

Equation for the calculation of 1, and t;

360 - (a+p)
141

Ty

7, = 0.39 for CuL3

o = largest L-Ni-L angles

B = second largest L-Ni-L angles

EPR data.

EPR spectra were recorded using JEOL Model No. X320. X band EPR spectra for Cul.1 recorded
for 1 Mm solution in DMF at 123 K, similar spectra were observed as reported earlier by our
group. From the magnetic field, its g values are (g.= 2.0344, g,= 2.0721, g,= 2.1955). Similar
features were observed for CuL2 and Cul3, and their g values are (g,= 2.0432, g,= 2.0721, g,~=

T, = 0.14 for Cul2

Ts S
141

RI™

_ 360 - (a + By

2.1952) and (g= 2.0408, g,~ 2.0721, g,= 2.1957), respectively.
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Figure S7. EPR spectrum of Culll (a), CuL2 (b) and CuL3 (c) in DMF at 123K at X-band
frequency and magnetic field modulation of 100 KHz, microwave power of 0.988 mW, Sweep
width 100 mT and modulation width 0.25 mT in DMF at 123K.

HPLC Analysis
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Figure S8. Reversed-phase HPLC chromatogram (recorded at 254 nm) of benzene.
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Figure S9. Reversed phase HPLC chromatogram (recorded at 272 nm) of phenol.

Optimization of the reaction conditions.
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(e) H,O, concentration variation
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Figure S10. (a) Conversion of benzene and selectivity of phenol with respect to catalyst variation;
(b) Effect of reaction time on benzene conversion and product selectivity; (c) Effect of
temperature; (d) Intensity of blue LED in aromatic hydroxylation; (e) H,O, concentration

variation.
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Figure S11. HPLC overlay chromatogram shows effect of reaction time on phenol formation over

a period of 30mint - 6 hr (at 272 nm)
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Figure S12a. HPLC overlay chromatogram shows effect of blue light intensity on phenol
formation (at 272 nm).
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Figure S13a. HPLC overlay chromatogram shows effect of Temperature in aromatic

hydroxylation on phenol formation (at 272 nm).
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Figure S13b. HPLC overlay chromatogram shows effect of H,O, variation in aromatic
hydroxylation on phenol formation (at 272 nm).

S18



&
CuL2 Culin k
ety ™ ~— JX
5r|:|ﬁ EIOD ?b . I

LI L L DL L DL R O I NI B |
.00 8.00 9.00 1D.IDID 11!{}0 12.00 13.00 14.00 15.00
Minutes

Figure S14. HPLC overlay chromatogram shows comparison of three catalysts in aromatic
hydroxylation on phenol formation (at 272 nm).

GC-MS Analysis

Scheme S1. Product distribution of photo-mediated hydroxylation of toluene using catalyst
CuLl.

O._H
Cu-L (0.02 mM) OH
H,0, (3 M)
+ +
Light, 50 °C, 6 hr
1M OH
Selectivity: 40% 22% 38%
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Figure S15a. GC-MS trace for hydroxylation of toluene using CuL.1. The inset shows the GC-MS
spectra for ortho-Cresol.
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Figure S15b. Reverse phase HPLC chromatogram for hydroxylation of toluene using Cul.1
(recorded at 254 nm).
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Scheme S2. Product distribution of photo-mediated hydroxylation of ethylbenzene using catalyst
Cull.

(o) CH;
Cu-L (0.02 mM) OH
H,0, (3 M)
+ +
Light, 50 °C, 6 hr
1M OH
Selectivity: 36.2% 30.3% 33.5%
m/Z=122.1
E) i
114 116 118 120 122 124 126 128 130
m/Z
O5-CHs
O 52
L A, N
T T T T T T T T
8 10 12 14

Retention time

Figure S16a. GC-MS trace for hydroxylation of ethylbenzene using CuLL1. The inset shows the
GC-MS spectra of O-ethyl phenol.

S21



Ethylbenzene blank
— Ethylbenzene reaction mixture

—A LN

600 800 1000 1200 1400 1600  18.00
Minutes

Figure S16b. Reverse phase HPLC chromatogram for hydroxylation of Ethylbenzene using CuL.1
(recorded at 254 nm).

Scheme S3. Product distribution of photo-mediated hydroxylation of bromobenzene using catalyst
Cull.

Br Br Br

Cu-L (0.02 mM) OH

H,0, (3 M)
+
Light, 50 °C, 6 hr
1™ OH
Selectivity: 56% 44%
m/7=1772 0
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m/iZ
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Figure S17. GC-MS trace for hydroxylation of bromobenzene using CuL1. The inset shows the
GC-MS spectra for 2-bromophenol.

Scheme S4. Product distribution of photomediated hydroxylation of chlorobenzene using catalyst
Cul1.

Cl Cl Cl
Cu-L (0.02 mM) OH
H,0,(3 M
© 20, (3 M) - .
Light, 50 °C, 6 hr
1M OH
Selectivity: 60% 40%
¢ m/Z=128.0
120 1‘22 1é4 156 128 1:;0 152 134 136 158 140
m/Z
Cl cl
©/OH
. .
L L e
v ) v ] v 1 v 1 v ] v 1
4 6 8 10 12 14 16

Retention time

Figure S18. GC-MS trace for hydroxylation of chlorobenzene using CulL1. The inset shows the
GC-MS spectra for 2-chlorophenol.

Scheme S5. Product distribution of photo-mediated hydroxylation of nitrobenzene using catalyst
Cull.

NO
NO2 (il (0.02mm) 2 o
H0,(3M)
Light, 50 °C, 6 hr
1M

Selectivity: 100%
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Figure S19. GC-MS trace for hydroxylation of nitrobenzene using Cul1. The inset shows the
GC-MS spectra for 2-nitrophenol.

Scheme S6. Product distribution of photo-mediated hydroxylation of cumene using catalyst CuL1.
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Figure S20. GC-MS trace for hydroxylation of cumene using CulL1. The inset shows the GC-MS
spectra for 2-isopropylphenol.

Scheme S7. Product distribution of photo-mediated hydroxylation of 1,2-dichlorobenzene using
catalyst CuLL1.
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Figure S21. GC-MS trace for hydroxylation of 1,2-dichlorobenzene using CuL.1. The inset shows
the GC-MS spectra for 2,3-dichlorophenol

Scheme S8. Product distribution of photo-mediated hydroxylation of biphenyl using catalyst
Cull.
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Figure S22. GC-MS trace for hydroxylation of biphenyl using CuL.1. The inset shows the GC-
MS spectra for the Ortho-hydroxylated product.

Scheme S9. Product distribution of photo-mediated hydroxylation of phenol using catalyst CuL.1.
OH
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Figure S23. GC-MS trace for oxidation of phenol using CuL1. The inset shows the GC-MS
spectra for Benzoquinone.

Scheme S10. Product distribution of photo-mediated hydroxylation of anthracene using catalyst
Cull.
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Figure S24. GC-MS trace for oxidation of anthracene using CuL1. The inset shows the GC-MS
spectra for 9,10-Anthroquinone.

Scheme S11. Product distribution of photo-mediated hydroxylation of 1,4-dichlorobenzene using
catalyst CulL.1.
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Figure S25a. GC-MS trace for hydroxylation of 1,4-dichlorobenzene using Cull. The inset
shows the GC-MS spectra for 2,5-dichlorophenol.
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Figure S25b. Reverse phase HPLC chromatogram for hydroxylation of 1,4-dichlorobenzene using
CuLl (recorded at 235 nm).
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Figure S25¢. GC chromatogram for hydroxylation of 1,4-dichlorobenzene using CulL1 (36 hr).
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Figure S26. GC-MS trace for hydroxylation of benzene using CuLL1. The inset shows the GC-
MS spectra for Biphenyl.
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Photo-mediated benzene hydroxylation in the presence of radical trap CCl,

In a typical reaction, 0.02 mM of CuL.1 in H,O: CH3CN (5:1) and benzene 89 pL (1 M) then 307
ul of HO, and 290 ul of CCl, were added to the reaction mixture, and the reaction mixture was
stirred under irradiation for 6 hours at 50 °C. A portion of the reaction mixture was analyzed by

GC-MS and product identification by comparison with an authentic standard.

o
Cu-L (0.02 mM) OH Ci
H,0, (3 M
© 202 (3 M) - + +
Light, 50 °C, 6 hr
M cCl, (3 M) 8
m/z=112.0
OH
166 1(‘33 1“]0 12 1;4 ‘I‘IIG 11‘3 1éo
m/Z
o
» :
. NS L
L ol 1 23 1 e L] L3 T L
4 5 6 7 8

Retention time

Figure S27. GC-MS trace for hydroxylation of benzene using CuL.1 in presence of CCly. The inset
shows the GC-MS spectra for chlorobenzene.

S32



0+
0 -

No scavenger IPA

TEMPO
Radical trapping agent

Figure S28. Radical trapping experiments using CuL.1.

Determination of the Kinetic Isotope Effect (KIE)

T
CCL4

A solution of CuL1 (0.02 mM) in H;O/CHClI; (1:5 v/v) ImL and benzene 44.5 uL (0.5 M) and

deuterated benzene 44.5 pL (0.5 M) was added to the solution, then 307 puL of 30% H,0, was

added slowly to the reaction mixture. This solution was stirred under irradiation at 50 °C for 6 hr.

The product distribution was calculated by GC-MS. The Kinetic isotope effect (KIE) value was

calculated by the ratio Ky/Kp =1.75 £ 0.2.
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Figure S29. GC-MS spectra for measurement of KIE using C¢Hg and CsDg and CulL1 as a

catalyst.
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EPR Data.
EPR spectrum was recorded in the absence of blue light, with CulL1 catalyst by adding DMPO

and we observed very small peak. Moreover, changing the intensity of the blue light (100% to

25%), we found less intense peak for EPR experiment.

100% light intensity|
25% light intensity

(a) — with light (b)

without light

Intensity
Intensity

318 320 322 324 328 328 316 318 320 322 324 326 328 330
Magnetic field (mT) Magnetic field (mT)

Figure S30. (a) A solution of Cul1 (0.02 mM), H,O, (3 M), benzene (1 M) and DMPO (0.2
mmol) was irradiated under blue LED or without blue LED in acetonitrile, and then an EPR
spectrum was recorded. (b) A solution of Cul1 (0.02 mM), H,O, (3 M), benzene (1 M) and
DMPO (0.2 mmol) was irradiated under blue LED (40 W) and blue LED (10W).

DFT.

Pathway B Pathway A

v

Cul1-OH

Figure S31. Reactivity of CuLX-O* or the OH* radical species towards the benzene ring.
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Figure S32. Gibbs free energy in kcal/mol of the Fenton-type mechanism for CuL.2.
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Figure S33. Gibbs free energy in kcal/mol of the Fenton-type mechanism for CuL3.
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Figure S34. The thermodynamic barrier and Mulliken spin (of the selected atoms) for the
intermolecular PCET oxidation and its conversion to the CuL1-OH species for CuLl (I),

hydrogen abstraction from the metal-attached quinoline unit (II), and hydrogen abstraction from
the free quinoline unit.
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Figure S35. The thermodynamic barrier and Mulliken spin (of the selected atoms) for the
intramolecular ligand oxidation and its conversion to the Cul2-OH species for Cul2 (1),
hydrogen abstraction from the metal-attached quinoline unit (II), and hydrogen abstraction from
the free quinoline unit.
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Figure S36. The thermodynamic barrier and Mulliken spin (of the selected atoms) for the
intramolecular ligand oxidation and its conversion to the CuL3*-OH species for CuL3; (I)
abstraction of quinoline hydrogen; (II) abstraction of —CH; hydrogen attached to the quinoline
ring.

Table S3: Energy associated with H-atom abstraction in Kcal/mol for CulL1, CuL2 and Cul3.

Catalyst Energy associated with H-atom abstraction
Kcal/mol
Cul1
H-atom abstraction from the metal-attached 4.06
quinoline unit
H-atom abstraction from the free quinoline 2.9
unit
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Cul.2

H-atom abstraction from the metal-attached 0.70
quinoline unit

H-atom abstraction from the free quinoline -0.38
unit

CulL3

H-atom abstraction from the metal-attached -3.23
quinoline unit

H-atom abstraction of -CH; hydrogen -23.40
attached to the quinoline ring.
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Figure S37. Mulliken spin density of selected atoms in the LXCuOOH intermediate.
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Figure S38. Thermodynamic barrier for dimerization of L1CuO".
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-0.6541
-6.451
-6.821

-5.5956

-7.2571
4.2799
3.7974
3.6073
5.2084
1.7074

1.606
-2.3064
-2.8423

0.2743
-2.0235
2.4008
-0.8041
-1.8489
-2.804
-3.7581
0.8374
-2.5411
-2.225
-2.8762
-3.4042
-1.0657
-1.941
-0.2421
-0.7908
-2.6006
-3.1413
-3.1353
-2.5989
3.108
3.7926
2.9864
3.5737
0.8798
2.5688
-0.159
-1.0119

-1.697
-2.3815
-0.5211
-0.0787
-1.8755
-1.8432
-2.3353

0.0469

1.5785

2.2413

0.6271

2.0339
2.8067
3.2156
2.7812

3.486
0.0592
-0.817
0.4702
0.7993
0.7364
0.0317
1.5877
1.0701
0.7058
1.4528

0.435
0.5746
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0.3857
-0.8419

1.0818
-0.9178

0.4852
-1.7437

-2.938
-3.7943
-3.3932
-5.0478
46411
-2.7807
-4.0956
-5.8154
-5.4631
-4.9464
-5.3434
-3.6871
-6.7745
-6.4162
-5.9073

3.2248

4.5358

2.9141

5.5002
1.9307

1.603
1.9204
0.3298
3.0592

-0.7669
0.9242
1.1113
-0.041
2.2639

-0.0089
2.2914
3.1493

-2.2804

-1.1981

1.192

3.216

-2.3305

-3.1542

-1.2034
1.2234
-3.254

-0.5702

-0.0957
-1.905

-1.0123
-2.2652

1.3125
0.3746
0.8184
-0.098
0.8099
0.2066
-0.5016
-0.5569
-1.1382
-1.2309
-1.8011
-1.1228
0.0258
-1.2408
-1.8577
-2.2786
-0.6194
0.5179
-1.7468
-2.3722
-0.6174
-0.0832
-0.423
-0.251

-0.9308
0.0049

CuL1-OH
6.0044
6.778
7.0323
6.1864
7.5411
5.8861
7.998
-3.3599
5.1491
3.886
3.6137
4.8022
-0.1288
-0.7059
-0.7654
0.7152
1.3162
2.1644
1.681
0.7703
2.3588
2.8146
-1.544
-1.385
22362
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1.6708
-0.4902
0.8467
2.7303
-1.1548
-3.0723
1.2765
-1.1803
-2.3774
-2.8003
-3.8423
1.2259
1.3483
2.2126
0.4666
1.2145
2.8247
2.6437
3.1005
3.6843
0.4253
1.3329
-0.9375
-2.5168
-2.8397

-0.553
-1.2509
-1.0638
-0.3981
-1.6409
-1.4776
-1.2987

0.0585
-1.0914
-0.7565

-0.877
-0.2426

2.755
3.0897
2.828
3.4362
1.3465
2.0119

0.3557

1.7326

0.4076

0.442
0.8854
1.8912
2.2026
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CulL2-OH

0.4335
1.0038
-0.769
0.3061
-0.7357
-1.7659
3.0448
4.3853
2.6118
5.2502
3.4882
1.605
6.0004
6.5633
4.7781
3.1223
6.9348
7.2609
5.4434
7.9329
-2.9391
-3.825
-3.3394
-5.042

-2.695
-4.1939
-5.8338
-5.4093
-6.7678
-6.3376
-5.9894

4.7718

1.6118
0.2678
2.0214
-0.7667
3.1482
1.1146
-0.8461
-0.5009
-2.1527
-1.5128
-3.1448
-2.4146
1.148
-1.1084
-2.8439
-4.1611
0.2017
-1.8445
-3.6113
0.5299
1.3908
0.2754
2.6183
0.4255

3.4726
-2.0247
-0.7334

-1.938
-0.6556

1.8018
-2.8394

0.7977

1.3319

0.8617

0.3968

0.8837
-0.1092

0.2603
-0.0396
-0.4136
-0.1641
-0.9104
-0.6599

0.1192
-0.6094
-1.2642
-1.0279
-0.7467
-1.1169
-1.6492
-1.4073
-1.3816
-0.4547
-0.6381
-0.9816
-1.3569

-0.8622
-0.3273
-1.5427
-1.0525
-2.0883
-2.4107

-1.205
-0.2729

Cul3-OH
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-5.406
-4.5626
-4.8272
-3.4503

1.4737

2.3092

1.8514

1.0152
-0.0861

-0.579
-0.7963

0.7512

6.4017

6.7166

5.5699

7.2503
-3.7585
-3.9129
-2.7155
-4.3702
-1.7457

2.2798

2.8185

-1.754
-2.6394

1.6945
2.7609
3.7396
-0.9416
2.742
2.4965
2.9611
3.6572
1.4392
2.3602
0.619
1.2476
2.5885
3.0145
3.1733
2.6766
-3.3645
-4.1258
-3.359
-3.6519
-0.7215
0.2358
1.0977
-2.0611
-2.3608

-1.8675
-1.6691
-2.0539
-0.1166
1.3287
1.9895
0.3286
1.7006
2.7846
3.1029
2.8863
3.4605
-0.4438
-1.4012
-0.0531
0.2414
0.1931
-0.575
0.5005
1.0551
0.9866
0.4375
0.4427
2.2972
2.5236
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TS
-2.2104 0 0797 O
1.5899 0 1.5422 H
0.1662 1.224  -0477 C
0.8476 0 -0.7256 C
0.1662 -1.224 -0.477 C
-1.0931 -1.2174 0.0975 C
-1.7248 0 03915 C
-1.0931 1.2174 0.0975 C
0.6564 2.1588 -0.7204 H
1.7075 0 -1.3805 H
0.6564 -2.1588 -0.7204 H
-1.5984 -2.1522 03108 H
-2.7117 0 0.8397 H
-1.5984  2.1522 03108 H
2.8858 H
0.3375 N
-0.1555 H
1.3914 Cu
3.0589 O
3.3309 H
0.568 C
1.3801 C
1.3393 C
0494 C
-0.2933 C
-0.2548 C
2.0681 H
1.9753 H
0458 H
-0.9442 H
-0.874 H




-1.017
0.3194
1.3362
1.0169
-0.3192
-1.3363
-1.8071
0.5673
2.3744
1.8072
-0.5675
-2.3744

Benzene

-0.9558
-1.3586
-0.4029
0.9559
1.3586
0.4028
-1.6985
-2.4142
-0.7156
1.6984
2.4142
0.7158

0
0.0001
-0.0001
0
0.0001
-0.0001
-0.0001
0.0001
-0.0001
0

0

0

TI DI TTOO00000

Cyclohexa-2,4-dien-1-one

-1.0337
0.3212
1.0767

-1.2098

-1.8186
-1.567

0.887

-1.7867

-2.8992
2.3077
0.2798

0.606
0.6055

1.2715
1.2752
0.0267
-1.148
0.0492
22171
2.1998
-2.0668
0.1267
0.0025
-1.2703
-1.8617
-1.8609

0
-0.0002
0
0.0001
0.0001
0
-0.0002
0.0002
0.0004
0.0002
-0.0002
0.8658
-0.8669

TTOOTTEZTZTOOOOAO
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Cyclohexa-2,4-dien-1-ol

-1.154
0.1821
0.2106

-1.125

-1.8365
-1.7075
0.7025
0.7486
-1.6551
-2.8956
1.003

1.4538
2.1101
2.7913

-1.2137
1.2566
-1.2476
-1.2383
-0.0202
2.1399
2.2024
-2.184
-2.1769
-0.0317
0.0162
0.0258
0.0846
-0.5345

0.0463
0.2278
0.2276
-0.0547
-0.1923
-0.1607
0.3297
0.3357
-0.1793
-0.4182
0.3995
1.4059
-0.5525
-0.2624
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-1.1286
-0.2662
-0.9382
-0.2184
1.1739
1.8564
1.6439
-0.8288
-0.7553
1.7276
2.9397
-2.3063
-2.6941

Phenol

1.2196
-1.1988
0.0257
1.2229
1.1884
-0.03
-2.1736
-2.1269
2.1643
2.1207
-0.0511
0.1132
-0.7702
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-1.017
0.3194
1.3362
1.0169
-0.3192
-1.3363
-1.8071
0.5673
2.3744
1.8072
-0.5675
-2.3744

Benzene

-0.9558
-1.3586
-0.4029
0.9559
1.3586
0.4028
-1.6985
-2.4142
-0.7156
1.6984
2.4142
0.7158

0
0.0001
-0.0001
0
0.0001
-0.0001
-0.0001
0.0001
-0.0001
0

0

0

TI DI TTOO00000

Cyclohexa-2,4-dien-1-one

-1.0337
0.3212
1.0767

-1.2098

-1.8186
-1.567

0.887

-1.7867

-2.8992
2.3077
0.2798

0.606
0.6055

1.2715
1.2752
0.0267
-1.148
0.0492
22171
2.1998
-2.0668
0.1267
0.0025
-1.2703
-1.8617
-1.8609

0
-0.0002
0
0.0001
0.0001
0
-0.0002
0.0002
0.0004
0.0002
-0.0002
0.8658
-0.8669
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Cyclohexa-2,4-dien-1-ol

-1.154
0.1821
0.2106

-1.125

-1.8365
-1.7075
0.7025
0.7486
-1.6551
-2.8956
1.003

1.4538
2.1101
2.7913

-1.2137
1.2566
-1.2476
-1.2383
-0.0202
2.1399
2.2024
-2.184
-2.1769
-0.0317
0.0162
0.0258
0.0846
-0.5345

0.0463
0.2278
0.2276
-0.0547
-0.1923
-0.1607
0.3297
0.3357
-0.1793
-0.4182
0.3995
1.4059
-0.5525
-0.2624
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-1.1286
-0.2662
-0.9382
-0.2184
1.1739
1.8564
1.6439
-0.8288
-0.7553
1.7276
2.9397
-2.3063
-2.6941

Phenol

1.2196
-1.1988
0.0257
1.2229
1.1884
-0.03
-2.1736
-2.1269
2.1643
2.1207
-0.0511
0.1132
-0.7702
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