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Figure S1. Quantitative detection of H>0,. (A) UV-vis absorption spectra of different
concentrations of H>O> under iodometry; (B) Standard curves for quantitative detection of H>O».
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Figure S2. Changes of H>O> concentration over time under TPN-CO-Eth catalysis.
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Figure S3. Comparison of photocatalytic H>O2 production rates of TPN-CO-Eth and TPN-CO-Eth
(scale-up).
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Figure S4. The recyclability of TPN-CO-Eth.
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Figure S5. Thermogravimetric and derivative thermogravimetric analysis of the catalysts. (A)
TPN-ET; (B) TPN-CO-Eth; (C) TPN-CO-But; (D) TPN-CO-Hex; (E) TPN-CO-9F; (F)
TPN-CO-Eth (scale-up).
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Figure S6. Thermogravimetric and derivative thermogravimetric analysis of the recycled

TPN-CO-Eth.
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Figure S7. Nitrogen adsorption-desorption isotherm of the catalysts. (A) TPN-ET; (B)
TPN-CO-Eth; (C) TPN-CO-But; (D) TPN-CO-Hex; (E) TPN-CO-9F; (F) TPN-CO-Eth (scale-up).
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Figure S8. FT-IR spectra of the recycled TPN-CO-Eth.



Transmission (%)

—— TPN-CO-But

1711 em’!

Transmission (%)

—— TPN-CO-Hex

1709 em™

Transmission (%)

——TPN-CO-9F

1714 cm™!

T T T T T T T
3500 3000 2500 2000 1500 1000 500

Wavenumber (cm™)

T T T T T T T
3500 3000 2500 2000 1500 1000 500

Wavenumber (cm™)

T T T T T T T
3500 3000 2500 2000 1500 1000 500

Wavenumber (cm™)

Figure S9. FT-IR spectra of catalysts. (A) TPN-CO-But, (B) TPN-CO-Hex, and (C) TPN-CO-9F.



— TPN-ET B —— TPN-CO-Eth C —— TPN-CO-But
10 20 30 40 50 10 20 30 40 50 10 20 30 40 50
20 (degrees) 20 (degrees) 20 (degrees)
D —— TPN-CO-Hex E —— TPN-CO-9F
10 20 30 40 50 10 20 30 40 50
20 (degrees) 20 (degrees)

Figure S10. XRD spectrum of the catalysts. (A) TPN-ET; (B) TPN-CO-Eth; (C) TPN-CO-But; (D)
TPN-CO-Hex; (E) TPN-CO-9F.
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Figure S11. XRDspectrum of the recycled TPN-CO-Eth.
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Figure S12. XPS spectrum of catalysts. (A) C 1s, (B) N 1s and (C) O 1s XPS spectra of TPN-ET;
(D) C 1s, (E) N 1s and (F) O 1s XPS spectra of TPN-CO-Eth.
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Figure S13. XPS spectrum of catalysts. (A) C s, (B) N 1s and
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(C) O 1s XPS spectra of

TPN-CO-But; (D) C 1s, (E) N 1s and (F) O 1s XPS spectra of TPN-CO-Hex; (G) C 1s, (H) N 1s

and (I) O 1s XPS spectra of TPN-CO-9F.



Figure S14. SEM image of the catalysts. (A) TPN-CO-Eth; (B) TPN-ET.
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Figure S15. Morphology of the recycled TPN-CO-Eth. (A) HR-TEM image and (B) SEM image.



Figure S16. SEM image of the catalysts. (A) TPN-CO-But; (B) TPN-CO-Hex; (C) TPN-CO-9F.



Figure S17. The contact angle of catalysts. (A) TPN-CO-But; (B) TPN-CO-Hex; (C) TPN-CO-9F.
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Figure S18. Photocurrent response performance of TPN-ET, TPN-CO-Eth, TPN-CO-But,
TPN-CO-Hex, and TPN-CO-9F.
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Figure S19. EIS spectra of TPN-ET, TPN-CO-Eth, TPN-CO-But, TPN-CO-Hex, and TPN-CO-9F.
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Figure S20. UV-vis DRS spectra (the inset figure is the Tauc plot) of catalysts. (A) TPN-CO-But,
(B) TPN-CO-Hex, and (C) TPN-CO-9F.
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Figure S21. UV-vis DRS spectra of the recycled TPN-CO-Eth.
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Figure S22. Mott-Schottky plots of the catalysts. (A) TPN-ET; (B) TPN-CO-Eth;

TPN-CO-But; (D) TPN-CO-Hex; (E) TPN-CO-9F.
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Figure S23. Band structure of TPN-CO-But, TPN-CO-Hex, and TPN-CO-9F.
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Figure S24. Reaction order of oxygen on the catalysts. (A) TPN-CO-Eth; (B) TPN-ET.
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Figure S25. EPR spectra. Comparison of EPR spectra of (A) TEMP-'0, and (B) DMPO--Oy
radical trapping experiments catalyzed by TPN-CO-Eth and TPN-ET.
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Figure S26. Quantitative detection of NBT and ABDA. UV-vis absorption spectra of different
concentrations of (A) NBT and (B) ABDA; Standard curves for quantitative detection of (C) NBT
and (D) ABDA.
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Figure S27. Linear-sweep RDE voltammograms of catalysts at different rotating speeds. (A)
TPN-ET, (B) TPN-CO-Eth.



Table S1. The comparison of the photocatalytic H2O» production rate of organic polymer-based

catalysts in pure water.

- .. H>0; yield
Catalyst Atmosphere Irradiation condition Ref.
(pmol g h'')
TPN-CO-Eth (07) 20 W LED light (455-460 nm) 3798 This work

TTP-1 Air 300 W Xe lamp (A > 420 nm) 3132 [1]
sp2¢c-CTF-4@AB 0 40 W blue LED (A > 420 nm) 2758 [2]
NMP Air 300 W Xe lamp (AM 1.5G) 2552.5 [3]
CTF-FL 0 300 W Xe lamp (A > 420 nm) 2412.1 [4]
Post-v-COF-F2 (07) 40 W blue LED (455 nm) 2219 [5]
HCOF (07) 300 W Xe lamp (A > 420 nm) 2113.9 (6]
BTDB-CNO0.2 Air 300 W Xe lamp (A > 420 nm) 1920 [7]
HEP-TAPT-COF 0 300 W Xe lamp (A > 420 nm) 1750 [8]
COF-2CN 0 300 W Xe lamp (A > 420 nm) 1601 9]
BTT-H2 COF (07) 40 W blue LED (467 nm) 1588 [10]
COF-TPT-Azo 0 300 W Xe lamp (A > 420 nm) 1498 [11]
FS-OHOMe-COF Air 300 W Xe lamp (A > 420 nm) 1480 [12]
PMCR-1 (07) 300 W Xe lamp (A > 420 nm) 1445 [13]
TpaBtt-COF (0]} 300 W Xe lamp (A > 420 nm) 1407 [14]
CTF-TD 02 300 W Xe lamp (A > 420 nm) 1342 [15]
TDB-COF (0)) 300 W Xe lamp (AM 1.5G) 723.5 [16]
COF-T{pBpy 0 300 W Xe lamp (A > 420 nm) 695 [17]
COF-N32 (07) 300 W Xe lamp (A > 420 nm) 605 [18]
TpAQ-COF-12 02 300 W Xe lamp (A > 420 nm) 420 [19]
TZ-COF 02 300 W Xe lamp (A > 420 nm) 268 [20]
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