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Figure S1. Quantitative detection of H2O2. (A) UV-vis absorption spectra of different
concentrations of H2O2 under iodometry; (B) Standard curves for quantitative detection of H2O2.



Figure S2. Changes of H2O2 concentration over time under TPN-CO-Eth catalysis.



Figure S3. Comparison of photocatalytic H2O2 production rates of TPN-CO-Eth and TPN-CO-Eth
(scale-up).



Figure S4. The recyclability of TPN-CO-Eth.



Figure S5. Thermogravimetric and derivative thermogravimetric analysis of the catalysts. (A)
TPN-ET; (B) TPN-CO-Eth; (C) TPN-CO-But; (D) TPN-CO-Hex; (E) TPN-CO-9F; (F)
TPN-CO-Eth (scale-up).



Figure S6. Thermogravimetric and derivative thermogravimetric analysis of the recycled
TPN-CO-Eth.



Figure S7. Nitrogen adsorption-desorption isotherm of the catalysts. (A) TPN-ET; (B)
TPN-CO-Eth; (C) TPN-CO-But; (D) TPN-CO-Hex; (E) TPN-CO-9F; (F) TPN-CO-Eth (scale-up).



Figure S8. FT-IR spectra of the recycled TPN-CO-Eth.



Figure S9. FT-IR spectra of catalysts. (A) TPN-CO-But, (B) TPN-CO-Hex, and (C) TPN-CO-9F.



Figure S10. XRD spectrum of the catalysts. (A) TPN-ET; (B) TPN-CO-Eth; (C) TPN-CO-But; (D)
TPN-CO-Hex; (E) TPN-CO-9F.



Figure S11. XRDspectrum of the recycled TPN-CO-Eth.



Figure S12. XPS spectrum of catalysts. (A) C 1s, (B) N 1s and (C) O 1s XPS spectra of TPN-ET;
(D) C 1s, (E) N 1s and (F) O 1s XPS spectra of TPN-CO-Eth.



Figure S13. XPS spectrum of catalysts. (A) C 1s, (B) N 1s and (C) O 1s XPS spectra of
TPN-CO-But; (D) C 1s, (E) N 1s and (F) O 1s XPS spectra of TPN-CO-Hex; (G) C 1s, (H) N 1s
and (I) O 1s XPS spectra of TPN-CO-9F.



Figure S14. SEM image of the catalysts. (A) TPN-CO-Eth; (B) TPN-ET.



Figure S15.Morphology of the recycled TPN-CO-Eth. (A) HR-TEM image and (B) SEM image.



Figure S16. SEM image of the catalysts. (A) TPN-CO-But; (B) TPN-CO-Hex; (C) TPN-CO-9F.



Figure S17. The contact angle of catalysts. (A) TPN-CO-But; (B) TPN-CO-Hex; (C) TPN-CO-9F.



Figure S18. Photocurrent response performance of TPN-ET, TPN-CO-Eth, TPN-CO-But,
TPN-CO-Hex, and TPN-CO-9F.



Figure S19. EIS spectra of TPN-ET, TPN-CO-Eth, TPN-CO-But, TPN-CO-Hex, and TPN-CO-9F.



Figure S20. UV-vis DRS spectra (the inset figure is the Tauc plot) of catalysts. (A) TPN-CO-But,
(B) TPN-CO-Hex, and (C) TPN-CO-9F.



Figure S21. UV-vis DRS spectra of the recycled TPN-CO-Eth.



Figure S22. Mott-Schottky plots of the catalysts. (A) TPN-ET; (B) TPN-CO-Eth; (C)
TPN-CO-But; (D) TPN-CO-Hex; (E) TPN-CO-9F.



Figure S23. Band structure of TPN-CO-But, TPN-CO-Hex, and TPN-CO-9F.



Figure S24. Reaction order of oxygen on the catalysts. (A) TPN-CO-Eth; (B) TPN-ET.



Figure S25. EPR spectra. Comparison of EPR spectra of (A) TEMP-1O2 and (B) DMPO-·O2-

radical trapping experiments catalyzed by TPN-CO-Eth and TPN-ET.



Figure S26. Quantitative detection of NBT and ABDA. UV-vis absorption spectra of different
concentrations of (A) NBT and (B) ABDA; Standard curves for quantitative detection of (C) NBT
and (D) ABDA.



Figure S27. Linear-sweep RDE voltammograms of catalysts at different rotating speeds. (A)
TPN-ET, (B) TPN-CO-Eth.



Table S1. The comparison of the photocatalytic H2O2 production rate of organic polymer-based
catalysts in pure water.

Catalyst Atmosphere Irradiation condition
H2O2 yield
(μmol g-1 h-1)

Ref.

TPN-CO-Eth O2 20 W LED light (455-460 nm) 3798 This work
TTP-1 Air 300 W Xe lamp (λ > 420 nm) 3132 [1]

sp2c-CTF-4@AB O2 40 W blue LED (λ > 420 nm) 2758 [2]
NMP Air 300 W Xe lamp (AM 1.5G) 2552.5 [3]

CTF-FL O2 300 W Xe lamp (λ > 420 nm) 2412.1 [4]
Post-v-COF-F2 O2 40 W blue LED (455 nm) 2219 [5]

HCOF O2 300 W Xe lamp (λ > 420 nm) 2113.9 [6]
BTDB-CN0.2 Air 300 W Xe lamp (λ > 420 nm) 1920 [7]

HEP-TAPT-COF O2 300 W Xe lamp (λ > 420 nm) 1750 [8]
COF-2CN O2 300 W Xe lamp (λ > 420 nm) 1601 [9]

BTT-H2 COF O2 40 W blue LED (467 nm) 1588 [10]
COF-TPT-Azo O2 300 W Xe lamp (λ > 420 nm) 1498 [11]

FS-OHOMe-COF Air 300 W Xe lamp (λ > 420 nm) 1480 [12]
PMCR-1 O2 300 W Xe lamp (λ > 420 nm) 1445 [13]

TpaBtt-COF O2 300 W Xe lamp (λ > 420 nm) 1407 [14]
CTF-TD O2 300 W Xe lamp (λ > 420 nm) 1342 [15]
TDB-COF O2 300 W Xe lamp (AM 1.5G) 723.5 [16]
COF-TfpBpy O2 300 W Xe lamp (λ > 420 nm) 695 [17]
COF-N32 O2 300 W Xe lamp (λ > 420 nm) 605 [18]

TpAQ-COF-12 O2 300 W Xe lamp (λ > 420 nm) 420 [19]
TZ-COF O2 300 W Xe lamp (λ > 420 nm) 268 [20]
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