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Table S1 The yields of catalysts

Catalyst Mass of precursor  Mass of NH,Cl  Mass of catalysts Yield

(mg) (mg) (mg) (%)

C-1000 300.00 - 25.51 5.44
CN-900 300.00 300.00 46.93 7.82
CN-1000(CN-1) 300.00 300.00 21.34 3.56
CN-1100 300.00 300.00 17.85 2.98
CN-1200 300.00 300.00 13.45 2.24
CN-0.5 300.00 150.00 18.71 4.16
CN-2 300.00 600.00 20.99 2.33
CN-3 300.00 900.00 19.27 1.60

calculated by the following equation:

) Mass of catalyst
Yield(%) = %X 100
Mass of precursor + Mass of NH,Cl

Fig. S1 Photographs showing the progression of the Aldol reaction and the formation of

precursors.
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Fig. S2 C 1s!? and O 1s XPS!3# spectra of precursors.
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Fig. S3 (a) XRD patterns, (b) the Na 1s XPS spectra of CN-7 and (c) TG curves of
CN-900 and CN-1000, performed under air flow.
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Fig. S4 (a) N, adsorption and desorption isotherms and (b) pore size distributions of
CN-T

S3



CN-1200 Io/lo=1.05
CN-11 Mnllsﬂ 05

CN-1000 Ip/1g=1.03

800 1000 1200 1400 1600 1800 2000
Raman shift [cm™]

Intensity [a.u.]

Fig. S5 Raman spectroscopy analysis of CN-T.
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Fig. S6 LSV curves in N,-saturated and CO,-saturated 0.1 M KHCOj solution using C-
1000 and CN-1000.
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Table S2 Comparison of potential, FEco, and j-o for reported metal-free carbon-based

materials measured in 0.1 M KHCOs aqueous solution using an H-type cell.

Catalyst

Synthesis Procedure

Potential (V vs. RHE)

FEco (%)

Jco (MA cm™)

Ref.

CN-1000

Direct one-step pyrolysis of
acetone-NaOH-derived

precursor at 1000 °C

-0.60

87.9

0.25

This Work

DNC-1200-L

Pyrolysis of ZIF-8 followed by
high-temp treatment at 1200 °C

to evaporate Zn

-0.70

93.0

0.7-0.8

BNMC

Silica-templated pyrolysis of
glucose, urea, dicyandiamide,
and boric acid at 1000 °C

0.55

95

2.7

SeBN-C-1100

Ternary doping pyrolysis of
precursors with Se, B, and N

sources at 1100 °C

-0.60

95.2

0.75

NS-C-900

Two-step pyrolysis of N and S

sources at 900 °C

-0.60

92.0

2.63

CB-NGC-2

Direct one-step pyrolysis of
Chitin biomass, melamine and

FeCl; at 900 °C

-0.56

91.0

3.7

NSHPC

Pyrolysis of glucosamine and
thiocyanuric acid with SiO,

hard templates

-0.60

87.8

~3

NF-C-950

Two-step pyrolysis of vacuum-
dried N and F precursors at 950
o
C

-0.60

90.0

1.90
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Fig. S7 Faradaic efficiency using CN-1000 (CN-1) at -0.6 V vs. RHE in N;- or CO,-
saturated 0.1 M KHCOj; solution.
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Fig. S8 Faradaic efficiencies of CO and current density using CN-1000 (CN-1) for 12
hours with the potential window at -0.6 V vs. RHE in CO,-saturated 0.1 M KHCO;

solution.
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Fig. S9 XPS spectra of CN-1000 after 12h test.
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Table S3 CHN analysis of CN-T.

Sample C [wt%] H [wt%] N [wt%]
CN-1000 83.49 1.11 1.76
CN-1100 91.45 0.42 1.49
CN-1200 89.80 0.24 1.11

Fig. S10 TEM image of (a) CN-0.5, (b) CN-1, (c) CN-2 and (d) CN-3.
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Fig. S11 Raman spectroscopy analysis of CN-x.
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Table S4 CHN analysis of CN-x.

Sample C [wt%] H [wt%] N [wt%]
CN-0.5 &3.11 0.83 1.88
CN-1 83.49 1.11 1.76
CN-2 78.29 1.40 1.24
CN-3 80.28 1.21 1.63
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Fig. S12 (a) FEco and FEy, using CN-x with the potential window at -0.5 V vs. RHE in
CO;-saturated 0.1 M KHCOj solution, (b) jco and jy, using CN-x at -0.5 V vs. RHE, (c)
FE(o and FEy; using CN-x with the potential window at -0.7 V vs. RHE in CO,-saturated
0.1 M KHCO;s solution, (d) jco and jy; using CN-x at -0.7 V vs. RHE, (¢) FEco and FEp,
using CN-x with the potential window at -0.8 V vs. RHE in CO,-saturated 0.1 M KHCO;
solution and (f) jco and jy, using CN-x at -0.8 V vs. RHE.
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Fig. S13 Nyquist plots of CN-x.
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