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Fig. S1. Schematic diagram of the tube furnace setup for hydrothermal aging.
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Fig. S2. Schematic diagram of the homemade evaluation system.

Table S1. Cu content of different samples from ICP.

Samples Fresh 600-16h  650-16h  700-16h  800-16h

Cu (wt.%) 3.83 3.83 3.83 3.83 3.83

ICP results in Table S1 show that the Cu content of all samples remains consistent
with that of the fresh sample (3.83 wt.%).
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Fig. S3. Different positions of ZCuOH and Z,Cu and the Cu migration process.
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Fig. S4. Peak fitting results of NH;-TPD over different aged samples. (a) 600-16h sample; (b)
650-16h sample; (c¢) 700-16h sample; (d) 800-16h sample.
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Fig.S5. (a) H,-TPR results over CuO standard samples. (b) The linear relationship between H,-
TPR peak area (TCD Signal*s) and CuO or H, consumption.

As shown in Fig. S5, there are two reduction peaks attributed to R2 and R3,
respectively. Additionally, a linear relationship between H,-TPR peak area (TCD
Signal*s) and H, consumption was established, providing a calibration factor for

subsequent quantitative work.

Cu0 + H, = Cu + H,0#(1)



2¢u""0 + Hy»Cu',0 + H,0#(2)
Cu',0 + Hy»2Cu° + H,0#(3)

The abscissa (temperature) in Fig. 5 was converted to time (s). After removing the
instrument-provided baseline, the peaks below 450 °C were integrated to obtain the
TCD Signal*s values. Subsequently, the actual H, consumption (below 450 °C) was
calculated using the calibration curve y=2.46*104x+2.08*10- (Fig. S5), and the results

are listed in Table S2.
Table S2. H, consumption below 450 °C of different samples. (0.3 g catalyst)
Samples Fresh 600-16h 650-16h 700-16h 800-16h
H; consumption (pmol) 103 98 99 106 110

The theoretical H, consumption was calculated based on the stoichiometric ratio
of the relevant reduction reaction. According to reaction equations R4 (

1 1
zcu''oH + EH2—>ZCu’ +H,0 Z,cu' + EH2—>ZCu’ +ZH

)and R5 ( ? ). 1 mole of Cu?* consumes

0.5 moles of H,. In contrast, 1 mole of CuO consumes 1 mole of H,. Taking the fresh
catalyst sample as an example: the catalyst contains Cu?" at a content of 3.07 wt.%
(equivalent to 483.7 umol/g) and CuO at a content of 0.76 wt.% (equivalent to 95.1
umol/g). The theoretical H, consumption of 0.3 g catalyst is calculated as follows:

H, consumption = (483.7/2+95.1 ) *0.3=101 (umol )

By the same token, the theoretical H, consumption of 800-16h sample is
calculated to be 115 (umol). Notably, the theoretical H, consumption values derived
from stoichiometric ratio calculations are in good agreement with the experimental

results presented in Table S2.
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Fig.S6. Experimental and peak fitting of H,-TPR results. (a) 600-16h sample; (b) 650-16h sample;
(c) 700-16h sample; (d) 800-16h sample.
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Fig. S7. Site density at different sites of fresh catalyst and different aged samples.

Based on the results of NH3;-TPD, NO+NH; titration, and H,-TPR, it is known that
when the coating amount is 150g/L, the site density of each site can be calculated, which

provides a basis for model establishment.
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Fig.S8. NHj; oxidation results of H-SSZ-13. 100 mg catalyst was used; GHSV=100,000 h-!,
NH;=500 ppm, O,=10%, H,0=3.8%, N, balance.

As shown in Fig. S8, NH; oxidation tests under same conditions were conducted
over the model catalyst H-SSZ-13, which exhibited negligible NH; conversion in the

low-temperature range.
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Fig. S9. Schematic diagram of NH3-SCO mechanism.
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Fig. S10. Steady state NH; oxidation reaction results over fresh sample and different aged samples.
33 mg catalyst was used; GHSV=400,000 h-!, NH;=500 ppm, 0,=10%, H,0=3.8%, N, balance.

In steady-state curves, all samples exhibit two distinct kinetic regimes similar to

those in Fig. 7(a).
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Fig. S11. Experimental and simulation results of NH;-TPD over fresh and different aged samples.

A comparison of the experimental and simulated NH;-TPD desorption profiles

demonstrates that the developed model successfully predicts the NH; desorption



behaviour of the fresh catalyst samples. Furthermore, with the kinetic parameters fixed,
merely adjusting the active site density enabled the model to accurately reproduce the
variation trends in both the position and intensity of the NH;3 desorption peaks for the
hydrothermally aged samples. These results collectively validate the rationality and

reliability of the NH3;-TPD model established in this study.

Nomenclature
Nomenclature
t Time (s)
T Temperature (K)
R Ideal gas constant (J-mol-!-K-1)
T Reaction rate for reaction j (mol/m3-s)
k j Rate constant for reaction j (s!)
A; Pre-exponential factor for reaction j (s')
E aj Activation energy of reaction j (kJ/mol)
E ng Activation energy for reaction j at zero coverage (kJ/mol)
a; Coverage dependence in reaction j (-)
Q Site density of active site k (mol/m?)
0k Coverage of species i1 on storage site k (-)
Yik Volume fraction at the reaction layer of specie i (-)




