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SUPPLEMENTARY INFORMATION FOR ASSESSING DATA-DRIVEN
PREDICTIONS OF BAND GAP AND ELECTRICAL CONDUCTIVITY
FOR TRANSPARENT CONDUCTING MATERIALS

Uncertainty quantification

Uncertainty quantification is critical for ML models in materials discovery, as experimental validation is resource-
intensive. It is essential to model uncertainties in predictions to improve reliability and guide experimental efforts
effectively. Uncertainty is typically categorized into two types:

* Aleatoric uncertainty: intrinsic noise in the observations, reducible only by improving data quality. It
can be homoscedastic (constant variance) or heteroscedastic (variance dependent on specific inputs), with
heteroscedastic uncertainty being common in materials science due to varying measurement conditions and
sample qualities.

 Epistemic uncertainty: Model uncertainty due to insufficient data. It is reducible by incorporating more data
in the training process.

Deep learning models do not naturally capture uncertainties, often yielding overconfident predictions. Aleatoric
uncertainty in neural-network models can be captured by predicting the parameters of a heteroscedastic Gaussian
distribution from the last layer, modeling both the predictive mean fp(x;) and variance 637 o(x;) using a Robust loss
function [1; 2]:
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For epistemic contribution to the uncertainty, deep ensembles [3]] are used, where the variance across predictions from
multiple neural networks approximates the bayesian predictive distribution. The final uncertainty combines aleatoric
and epistemic components:

6°(xi) = 67 Z 624 (xi), ()

where 6379”1 (z;) denotes the contribution to aleatoric uncertainty produced by the m-th model in the ensemble, while
62(x;) denotes the contribution to the epistemic uncertainty, obtained by computing the variance over predictions
from all the models in the deep ensemble. Unlike fully Bayesian methods like Bayesian Neural Networks (BNN ) [4]],
deep ensembles approximate the Bayesian posterior by training multiple neural networks independently with different
random initializations and data shuffling, providing a scalable and practical approximation to bayesian inference.
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Figure 1: Parity plots of ML cluster predictions under the LOCO-CV evaluation scheme.

LOCO-CV material clusters analysis

In this section, we present a more detailed analysis of material clusters generated using the LOCO-CV [3] evaluation
method, as described in Sections of the main thesis. In Figure[T|we show parity plots related to LOCO-CV evaluation
scheme, colored according to different material clusters encountered in both conductivity, and band gap datasets.
In Figure 2] we report the top-5 element prevalence for each chemical cluster. In general, the presence of diverse,
predominant elements in each cluster indicates that the clustering algorithm has successfully grouped the chemical
formulas based on their composition. Moreover, the diversity of material groups suggests that the clusters effectively
represent distinct regions of the chemical space, potentially capturing different types of compounds or materials.

Conductivity database clusters In the case of conductivity database, Cluster 0 (Se-Cu-Bi-Sn-Pb) consists of
selenium containing compounds as selenides and selenide oxide or selenide halides, while Cluster 1 (O-Sr-Cu-La-Mn)
contains oxides including sulphates and phosphates. Cluster 2 (Sb-Si-Ge-Ni-Co) is characterized by intermetallic
compounds, including borides, carbides, and nitrides, with a significant presence (% of entries) of antimony containing
compounds. Cluster 3 (S-Sn-Cu-Bi-Ni) also contains intermetallic compounds along with sulphides, borides, carbides
and halide compounds, while approximately % of the entries in Cluster 4 (Te-Fe-Al-Pd-As) consists of materials
containing tellurium, with the rest consisting mostly of other intermetallic compounds and some oxide containing
materials.
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Figure 2: Top-5 element prevalence of LOCO-CV material clusters both for conductivity (left) and band gap (right)
datasets.

Band gap database clusters For the band gap database, Cluster 0 (Te-Pb-In-Cd-Sb) consists mainly of tellurides and
lead-based compositions, while Cluster 1 (O-Li-Cu-B-Ba) represents oxide containing compounds including sulphates
and phosphates. Cluster 2 (S-Cu-In-Ga-Sb) consists of sulphide materials, including sulphide halides. Cluster 3
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(Si-Ge-Ga-As-Al) represent intermetallics, including silicides, phosphides, carbides, borides, nitrides, while Cluster 4
(Se-Cu-Ga-In-Sn) consists of selenide materials including selenide halides.

References

[1] Janosh Riebesell. Probabilistic Data-Driven Discovery of Thermoelectric Materials. MPhil thesis, University of
Cambridge, 2019. URL https://github.com/janosh/thermo.

[2] Rhys E. A. Goodall and Alpha A. Lee. Predicting materials properties without crystal structure: deep representation
learning from stoichiometry. Nature Communications, 11(1):6280, Dec 2020. ISSN 2041-1723. doi310.1038/s41467-
020-19964-7. URL https://doi.org/10.1038/s41467-020-19964-7.

[3] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive uncertainty
estimation using deep ensembles, 2016. URL https://arxiv.org/abs/1612.01474.

[4] Julyan Arbel, Konstantinos Pitas, Mariia Vladimirova, and Vincent Fortuin. A primer on bayesian neural networks:
Review and debates, 2023. URL https://arxiv.org/abs/2309.16314.

[5] Bryce Meredig, Erin Antono, Carena Church, Maxwell Hutchinson, Julia Ling, Sean Paradiso, Ben Blaiszik, Ian
Foster, Brenna Gibbons, Jason Hattrick-Simpers, Apurva Mehta, and Logan Ward. Can machine learning identify
the next high-temperature superconductor? examining extrapolation performance for materials discovery. Mol. Syst.
Des. Eng., 3:819-825, 2018. doi:10.1039/C8ME00012C. URL http://dx.doi.org/10.1039/C8ME00012C,


https://github.com/janosh/thermo
https://doi.org/10.1038/s41467-020-19964-7
https://doi.org/10.1038/s41467-020-19964-7
https://doi.org/10.1038/s41467-020-19964-7
https://arxiv.org/abs/1612.01474
https://arxiv.org/abs/2309.16314
https://doi.org/10.1039/C8ME00012C
http://dx.doi.org/10.1039/C8ME00012C

