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S1. Functional Group analysis 

 In this section, we present the counts of functional groups on the solute molecules in MixSolDB 
dataset.  

 

 
 

  

CountsFunctional 
GroupsCountsFunctional 

GroupsCountsFunctional 
Groups

452Thiol5,074Alkene41,983Alkane

447Nitrate4,735Nitro40,531Arene

376Alkyne4,268Sulfone16,219Ether

135Phosphoric Acid3,576Sulfide15,713Alcohol

134Phosphoric Ester3,325Ketone15,295Cycloalkanes

98Imine3,142Phenol14,745Halide

94Nitroso2,653Fused Ring 
Cycloalkanes14,438Fused Ring 

Aromatics
54Sulfoxide2,067Nitrile13,274Amine

21Azide1,013Enamine8,364Carboxylic Acid

16Acyl Halide640Aldehyde7,961Amide

8Sulfinate456Peroxide5,842Ester

Table S1. Distribution of Functional Groups of solute molecules in MixSolDB. 



S2. Cross-Validation Results for Machine Learning Models 

 In this section, we present the results of a cross-validation procedure aimed to evaluate the 
predictive performance of two machine learning models: a concatenation model and a subgraph model. 
This procedure offers a robust means of quantifying model accuracy. Consequently, it helps to mitigate 
overfitting and provides a more reliable assessment of the models’ capabilities. 

 

 

 

 
Model Metric  Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 

Concatenation 

Model 

MAE 

Train 0.77  0.81  0.64  0.81  0.83 

Valid 0.78  0.85  0.67  0.83  0.84 

Test 0.84  0.88  0.68  0.87  0.87 

RMSE 

Train 1.34  1.36  0.98  1.37  1.35 

Valid 1.34  1.4  1.02  1.39  1.38 

Test 1.46  1.48  1.08  1.48  1.45 

Subgraph 

Model 

MAE 

Train 0.52  0.57  0.59  0.65  0.55 

Valid 0.57  0.63  0.66  0.69  0.61 

Test 0.63  0.67  0.7  0.76  0.65 

RMSE 

Train 0.88  0.9  0.93  1.04  0.88 

Valid 0.97  0.98  1.04  1.07  0.94 

Test 1.13  1.12  1.17  1.25  1.1 

 

Binary Solvent Systems: Figure S1 displays parity plots for both the concatenation and subgraph 
models in binary solvent systems. These plots compare the predicted values from each model to the 
corresponding reference values for each fold. Table S2 presents the mean absolute error (MAE) and root 

Figure S1. Parity plots for the concatenation and subgraph models applied to binary solvent systems. 

Table S2. Model metrics by fold for both the concatenation and subgraph models in binary solvent systems. 



mean squared error (RMSE) metrics for each fold. Collectively, Figure S1 and Table S1 offer a 
comprehensive depiction of how both models perform across multiple folds in binary solvent systems. 

  

 

 

 
Model Metric  Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 

Concatenation 
Model 

MAE 

Train 0.08  0.09  0.08  0.09  0.07  

Valid 0.09  0.11  0.11  0.11  0.1  

Test 0.09  0.11  0.09  0.12  0.09  

RMSE 

Train 0.19  0.2  0.17  0.24  0.19  

Valid 0.16  0.19  0.25  0.31  0.21  

Test 0.15  0.18  0.14  0.25  0.14  

Subgraph 

Model 

MAE 

Train 0.09  0.09  0.1  0.08  0.07 

Valid 0.12  0.11  0.15  0.11  0.1 

Test 0.12  0.12  0.14  0.11  0.09 

RMSE 

Train 0.22  0.24  0.28  0.21  0.19 

Valid 0.25  0.17  0.38  0.29  0.24 

Test 0.19  0.18  0.35  0.21  0.14 

 

Ternary Solvent Systems: Figure S2 shows analogous parity plots for ternary solvent systems, 
again for both the concatenation and subgraph approaches. As with the binary solvent data, predicted values 
are plotted by fold. Table S3 contains the MAE and RMSE for each fold in ternary solvent systems. These 
results underscore the models’ performances in more complex solvent environments and highlight their 
consistency across different data partitions. 

  

Figure S2. Parity plots for the concatenation and subgraph models applied to ternary solvent systems. 

Table S3. Model metrics by fold for both the concatenation and subgraph models in ternary solvent systems. 



S3. Solvent Performance Analysis 

We examined the performance of concatenation and subgraph architectures for the five most common 
binary solvent systems in our multicomponent solubility database. We choose to consider only binary 
solvent performance due to the larger number of unique solvents (>100) within the binary solvent database 
compared to the ternary solvent database. We find that the trends in model performance for the subgraph 
and concatenation architectures remain consistent in our solvent system analysis. In particular, we see that 
the subgraph architecture has a lower average error (MAE) with fewer and less severe outliers (RMSE) 
when compared to the concatenation architecture. Additionally, the MAE and RMSE of each solvent system 
remains close to the overall model performance (test set MAE/RMSE) over all molecules. Therefore, we 
believe that the developed GNNs remain relevant for a wide variety of solvents and applications. 

Model Metric  
Solvent 

System 1 
Solvent 

System 2 
Solvent 

System 3 
Solvent 

System 4 
Solvent 

System 5 

Concatenation 

Model 

MAE 
Train 0.81  0.77  1.07  0.92  0.53 
Valid 0.88  0.85  1.17  0.91  0.49 

Test 0.95  0.82  1.13  0.96  0.55 

RMSE 
Train 1.3  1.23  1.93  1.32  0.73 
Valid 1.39  1.37  2.04  1.32  0.66 

Test 1.49  1.29  2.06  1.36  0.85 

Subgraph 
Model 

MAE 

Train 0.6  0.51  0.61  0.51  0.45 

Valid 0.67  0.54  0.71  0.54  0.47 

Test 0.76  0.55  0.75  0.54  0.54 

RMSE 

Train 1.01  0.69  1.07  0.69  0.58 

Valid 1.1  0.75  1.28  0.73  0.6 

Test 1.29  0.74  1.41  0.74  0.75 

Table S4. Model metrics for the 5 most common binary solvent systems for both the concatenation and subgraph models 

(for cross-validation fold 2).  

Figure S3. Parity plots for the 5 most common binary solvent systems for both the concatenation and subgraph models 

(for cross-validation fold 2). 



S4. Model Baseline 

To provide a baseline for our GNN performance, we trained a random forest model on our binary solubility 
database, using the temperature/stoichiometry/Morgan fingerprint of each solute and solvent system pair as 
the model input. Our morgan fingerprint used a bit length of 4096 and a radius of 3 following benchmarking 
over the entire binary solubility database. To allow for more direct comparison to our GNN models, we 
used the same train/validation/test assignments (80/10/10) as the binary models shown in Figure 4, while 
omitting the validation set due to incompatibility with the Scikit-Learn API. We find that the random forest 
model has poor train/test performance (MAE of 0.02/2.80) compared to the GNN models trained on the 
same training set and evaluated on the same test set. We believe this model baseline highlights the utility 
of GNN-based approaches over more traditional models.  
 

S5. Model Hyperparameter Evaluation 

In order to identify optimal hyperparameters for our models, we benchmarked hyperparameter performance 
against the test set MAE/RMSE for the binary solvent prediction task. We found that the GNN model using 
the hyperparameters outlined in the paper (in bold) was the most effective in achieving high test set 
performance while reducing overfitting. 
 

 

Values TestedHyperparameters
[10, 100, 1000]Number of epochs

[1, 3, 5]Number of message blocks

[32, 64, 128]Number of neurons

Table S5. Hyperparameter Benchmark 


