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S.1. SUPPLEMENTARY INFORMATION

A. Effect of the acquisition function on optimization performance

1. Acquisition functions

Two acquisition functions are considered in this work. The expected improvement (EI) acquisition function is a
commonly used function in the Bayesian optimization literature. Given a black-box function f to be optimized, let
f ′ be the best value of this function observed so far. EI proposes to evaluate f at the parameter point at which we
expect to improve on f ′ the most. The utility of a parameter point x is then max (0, f ′ − f(x)), and the EI acquisition
function is the expectation value of this utility,

α(x) = (µ(x)− f ′ − ξ) Φ (Z) + σ(x)ϕ (Z) , (10)

Z =
µ(x)− f ′ − ξ

σ(x)
. (11)

where µ(x) and σ(x) are respectively the surrogate model’s mean and standard deviation. Φ and ϕ are the CDF and
PDF of the standard normal distribution, respectively. ξ is a tradeoff parameter which determines the amount of
exploration during optimization. We set ξ = 0.01 in all experiments.

The upper confidence bound (UCB) acquisition function is

α(x) = µ(x) +
√
βσ(x) , (12)

where µ(x) and σ(x) are respectively the surrogate model’s Gaussian mean and standard deviation. β > 0 is a tradeoff
parameter that weights the importance of variance based sampling in the acquisition function. We set β = 0.2 in all
experiments.

We perform a series of experiments to determine the effect of acquisition function choice on unconstrained and
constrained optimization analytic surfaces. The 2d continuous Dejong surface and the 2d categorical Michalewicz
surface are used. The unconstrained and constrained versions of the surface are used, and the FWA and FCA-0.2
strategies are tested for the constrained tests. Results from these comparative experiments are shown in Fig. S1. In
all tests, the UCB acquisition outperformed or had equivalent performance compared to the EI acquisition. Thus, we
elected to use UCB in all experiments reported in this work.

2. Acquisition function optimization

Atlas contains 3 acquisition function optimization strategies: (i) a constrained gradient optimizer based on
SLSQP1 from the BoTorch library,2 (ii) a constrained genetic algorithm (GA) optimizer based on the PyMOO
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FIG. S1. Comparison of the EI and UCB acquisition functions on 2d unconstrained and constrained analytic surfaces. The top
row shows regret traces on the continuous 2d Dejong surface. The bottom row shows the number of surface evaluations needed
to identify the optimum of the 2d categorical Michalewicz surface. For each experiment, strategies were run independently 40
times.

library,3 and (iii) a constrained GA based on the DEAP library.4,5 Importantly, all strategies are compatible with
optimization over parameter domains with a priori known constraints.6 This is essential for the FCA feasibility-
aware acquisition strategy, where at each iteration α(x) must be optimized according to a learned constraint oracle
P (feasible|x) > t, where t ∈ [0, 1).
For fully-continuous parameter problems, the gradient-based acquisition optimization makes use of the BoTorch

library, which uses the SLSQP algorithm. For highly constrained problems (i.e. those for which a significant
fraction of the parameter space is infeasible), we found that the SLSQP optimizer undergoes serious convergence
issues. Ultimately, this significantly increases the overall per-iteration runtime of the optimization procedure. With
our in-house approach for constrained acquisition optimization using DEAP, we are able to preserve optimization
performance while significantly reducing the per-iteration runtime. Empirical comparisons of the two methods are
shown in Fig. S.1A 2 and in Table S.1A 2. We use the 2d (un)constrained StylinskiTang surface, testing the FCA
strategy with t = {0.2, 0.5, 0.8} for the constrained case. While the genetic acquisition optimizer is slightly slower
in the unconstrained case, constrained acquisition optimization only requires ≈ 10 seconds per iteration, while the
gradient optimizer can take as long as 250 seconds per iteration. Thus, we elect to use the DEAP acquisition
optimization strategy for all experiments in this paper.

Acquisition optimization time (s)
Setting Gradient Genetic

Unconstrained 0.207± 0.002 2.219± 0.001
Constrained (FCA, t = 0.2) 71.28± 3.36 11.03± 0.02
Constrained (FCA, t = 0.5) 253.94± 11.28 9.12± 0.26
Constrained (FCA, t = 0.8) 60.84± 3.43 9.88± 0.25

TABLE S1. Average time taken for gradient and genetic strategies to optimize acquisition functions. Reported values are
averaged over 100 iterations and 40 independent runs. The 2d (constrained) StyblinskiTang analytical function is used. We
do not find that the number of transpired evaluations to have a significant influence on acquisition optimization time in these
experiments.
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FIG. S2. Comparison of the SLSQP (gradient) and DEAP (genetic algorithm) acquisition optimization strategies in terms
of optimization performance and time taken to optimize α(x) as a function of transpired evaluations. The unconstrained
and constrained 2D StyblinskiTang surface is used in all experiments, using the FCA strategy with t = {0.2, 0.5, 0.8} for the
constrained case. Each approach was run 40 independent times.

3. Modification to the FIA and FWA feasibility-aware acquisition functions

As addressed in main text Sec. III.B, we report a minimum-filtered version of the FWA and FIA functions. To
the best of our knowledge, this is a novel modification. The output of the GP feasibility classifier, P (feasible|x), is
replaced in main text Equations 5 and 7 by

ρ(x) = min [0.5, P (feasible|x)] . (13)

Effectively, this modification biases the search away only from areas where the classifier believes are infeasible.
Put another way, all parameter space regions where P (feasible|x) ≥ 0.5 are treated as equally promising. We found
that without using ρ(x), the search would often become trapped in parameter regions where P (feasible|x) ≈ 1, i.e.
P (feasible|x) would overpower the α(x) containing factor and term in main text Equations 5 and 7, respectively.
Validation of this claim is shown in Fig. S3, where we compare optimization performance of the minimum filtered and
original versions of FIA and FWA functions using the 2d constrained HyperEllipsoid and Branin-Hoo surfaces. In
each case, the minimum filtered version achieves a significantly lower regret value after 50 evaluations, while incurring
a comparable number of infeasible measurements.
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FIG. S3. Comparison of FIA and FWA feasibility-aware optimization strategies’ performance on the 2d constrained Hyper-
Ellipsoid and Branin-Hoo surfaces. “Filtered” strategies have P (feasible|x) replaced by ρ(x) = min [0.5, P (feasible|x)]. The
DEAP acquisition optimizer is used in all tests. Each approach was run 40 independent times.

B. Analytical tests on discrete surfaces

CatSlopeConstr CatDejongConstr CatMichalewiczConstr CatCamelConstr

Strategy % explore (↓) % infeas (↓) % explore (↓) % infeas (↓) % explore (↓) % infeas (↓) % explore (↓) % infeas (↓)

Random

Näıve-replace 22.2± 1.8 22.4± 0.7 82.5± 2.8 15.9± 0.5 9.1± 0.4 18.1± 0.6 44.1± 2.2 21.8± 0.4
Näıve-ignore 3.7± 0.1 32.3± 1.1 3.3± 0.1 26.8± 1.0 10.1± 0.5 42.4± 1.4 13.9± 0.5 22.2± 0.5
Näıve-surrogate 4.6± 0.2 33.5± 1.0 5.8± 0.4 31.2± 1.0 7.6± 0.3 24.7± 0.8 20.9± 0.9 21.4± 0.4

FWA 3.6± 0.1 28.3± 1.0 10.5± 2.1 26.4± 1.3 9.7± 0.5 34.8± 1.1 12.3± 0.5 22.7± 0.5
FCA-0.2 3.7± 0.1 31.8± 1.1 48.5± 7.9 21.1± 2.1 12.0± 0.9 35.7± 1.0 12.3± 0.6 21.5± 0.7
FCA-0.5 5.7± 0.7 26.8± 0.9 76.4± 8.5 17.0± 0.7 16.9± 1.7 22.6± 0.9 13.2± 0.5 22.3± 0.5
FCA-0.8 18.8± 1.7 17.5± 0.8 43.8± 4.5 10.2± 1.7 32.6± 4.9 11.8± 1.4 16.9± 1.2 22.3± 0.6
FIA-0.5 3.6± 0.1 30.0± 0.8 12.0± 1.6 26.6± 1.1 9.5± 0.6 30.9± 0.8 13.0± 0.5 22.3± 0.5
FIA-1 3.7± 0.1 30.9± 1.0 6.3± 0.7 27.0± 1.0 6.8± 0.4 27.0± 1.7 12.9± 0.5 22.0± 0.5
FIA-2 3.6± 0.1 31.5± 1.1 4.4± 0.2 30.2± 1.1 9.5± 0.5 37.4± 1.3 13.8± 0.4 22.4± 0.5

TABLE S2. Numerical results of benchmark of feasibility-aware acquisition strategies on 2d categorical constrained surfaces.
The % explored metric is the percentage of the optimization domain (442 total options) needed for each strategy to identify the
single best choice. The % infeas metric is the percentage of all measurements that are infeasible. All strategies are independently
run 100 times. The best performing strategies for each application and performance metric are bolded. Statistical hypothesis
testing is conducted using Welch’s t-test.

Results of the discrete, ordered benchmarks are shown in Fig. S4 and numerical values are summarized in Tab. S4.
Results of the categorical, unordered benchmarks are shown in Fig. S5. Here, each run is terminated after identification
of the surface’s global optimum, and 100 independently seeded runs are executed. The major takeaways from the
discrete, ordered benchmark tests are listed below.

• As discussed in main text Sec. IV.A, the näıve-ignore function gets stuck repeatedly recommending the same
continuous parameters in the absence of a self-avoidance routine. However, for fully discrete/categorical prob-
lems, duplicate avoidance is baked into Atlas, and this behavior is no longer possible. In fact, the näıve-ignore
function is among the most efficient strategies for the discrete CatSlopeConstr and CatDejongConstr surfaces.
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FIG. S4. Constrained optimization benchmarks on analytical functions with discrete, ordered parameters. The upper row
shows heatmaps of the discrete optimization domain. Gray crosses show feasible measurements, while white crosses show
infeasible measurements, and pink stars show the location of the unconstrained global optima. The middle row shows box-and-
whisker plots of the distribution of the percentage of explored parameter space needed for each strategy to identify the global
optimum. Each strategy was run 100 independent times. The bottom row shows box-and-whisker plots of the distribution of
the number of infeasible measurements queried by each strategy.

• For the CatCamelConstr problem, c(x) is constructed by randomly constraining a set of discrete options.
Therefore, we expect its structure not to be learnable by the classifier. Indeed, the % infeas metric for this
problem is statistically equivalent across all strategies in Tab. S4.

• The FCA-0.8 strategy measures the lowest % infeasible parameters for all discrete surfaces. This, combined
with similar outcomes on continuous surface benchmarks and real-world applications, suggest that FCA with t
set close to 0.8 is the most effective strategy for limiting the constraint violation rate.
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FIG. S5. Constrained optimization benchmarks on analytical functions with categorical, unordered parameters. The upper
row shows heatmaps of the discrete optimization domain. Gray crosses show feasible measurements, while white crosses show
infeasible measurements, and pink stars show the location of the unconstrained global optima. The middle row shows box-and-
whisker plots of the distribution of the percentage of explored parameter space needed for each strategy to identify the global
optimum. Each strategy was run 100 independent times. The bottom row shows box-and-whisker plots of the distribution of
the number of infeasible measurements queried by each strategy.

C. Details of the (poly)pharmacological design of BCR-Abl fusion protein inhibitors application

1. Extrapolation of kinase dataset using supervised learning

Desai et al.7 report a flow technology platform applied to discovering novel Abl kinase inhibitors, in which the flow
system enables synthesis, purification and analysis via an on-line bioassay. The authors conduct a search for kinase
inhibitors by combining 10 templates with 27 hinge binding aromatic alkynes to span a space of 270 molecules joined
via a Sonogashira coupling reaction.

The authors subject 96/270 possible structures to synthesis and bioassay analysis. Of these 96, 71 were synthetically

successful and had measurements of the IC50. Formally, we have datasets DK
f,exp = {xi, yi}K−L

i=1 and DK
c,exp =

{xi, ỹi}Ki=1, where K = 96 and L = 96 − 71 = 25. The subscript exp is used to indicate that this data comes purely
from experiment. We use supervised learning to extend the datasets DK

f,exp and DK
c,exp to include measurements for

all 270 candidate inhibitors. We first train a classifier, which is trained on the data in DK
c,exp and makes predictions

binary predictions on the remaining 270 − 96 = 174 candidates. The NGBoost algorithm is used for supervised
learning. NGBoost is a flexible, scalable approach which generalizes gradient boosting to probabilistic regression.8

Extended-connectivity fingerprints (ECFPs)9 with a radius of 3 and dimension of 1024 represent the inhibitor’s
molecular structures, i.e. xi ∈ {0, 1}1024. This produces the hybrid experimental-synthetic feasibility dataset DK

c,hyb
which is ultimately used as the feasibility oracle during our optimization experiments, where K = 270.
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Next, a regressor is trained on the experimental data to extrapolate IC50 values for the entire inhibitor candidate
space. Here, we again use NGBoost and the identical ECFP molecular representation. This time, the model is
trained on DK

f,exp, and makes predictions only for the structures which that were deemed to have feasible syntheses
by our classifier. The results of the NGBoost classifier and regressor are shown in Figure S6 and S7 respectively.
Statistics are reported as averages over a 5-fold cross-validation procedure. The average test set AUC-ROC value
for our classifier is 0.75, indicating acceptable discriminative performance. The regressor achieves an average test set
Pearson coefficient of 0.94, indicating excellent performance.

FIG. S6. ROC curves and associated average AUC-ROC values of the NGBoost model predicting Abl kinase inhibitor
synthesizability (binary classification) on cross-validation folds of the dataset reported by Desai et al.7

FIG. S7. Parity plots and associated average Pearson coefficient values of the NGBoost model predicting Abl kinase inhibitor
pIC50 (regression) on cross-validation folds of the dataset reported by Desai et al.7 The pIC50 is the negative base 10 logarithm
of the IC50.

2. Polypharmacology of BCR-Abl fusion protein inhibitors

Imatinib is a type of cancer growth blocker and an example of a tyrosine kinase inhibitor.10,11 It was originally
designed as a selective inhibitor against the BCR-Abl fusion protein, but was subsequently shown to inhibit the non-
oncogenic C-Abl kinase in normal cells. This additional activity was reported to be relevant for the drug’s efficacy
against chronic myeloid leukemia, with the drug’s polypharmacological profile potentially forming the basis for its
therapeutic activity.12
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3. Simulation of additional objectives using MPNN emulators

We create two virtual optimization objectives by emulating the log half maximal inhibitory concentration (pIC50)
of the inhibitors reported by Desai et al. for two additional tyrosine kinase receptors: the platelet-derived growth
factor receptor, and stem cell growth factor KIT. Briefly, this will constitute a multi-objective optimization problem
with the same unknown constraints as in the single objective case in which Atlas is tasked with finding a single
inhibitor that has a polypharmacological effect, that is, a pharmaceutical agent that can act on multiple targets or
disease pathways.

Datasets of pIC50 values for tyrosine kinase inhibitor drugs against both KIT and PDGF were procured from
BindingDB.13–16 The KIT dataset consisted of 1810 unique drug structures, while the PDGF dataset consisted of
2242 structures. On each dataset, a message-passing neural network (MPNN) is trained. We use the Chemprop17–19

framework to train the MPNNs. A subset of the hyperparameters of each network (hidden size, depth, dropout
and number of feed-forward layers) were tuned using 50 iterations of Bayesian optimization as implemented in the
HyperOpt package.20 The resulting parity plots for each architecture are shown in Fig. S8. The models achieve
Pearson coefficients ≥ 0.88 on the train and test sets (80/10/10 splits), indicating satisfactory performance for our
emulator networks.

FIG. S8. Parity plots and associated Pearson coefficients for MPNN models trained to reproduce pIC50 values on the KIT and
PDGF datsets.

The trained MPNN models are then asked to predict pIC50 values for the inhibitors in the chemical space defined by
Desai et al.7. KDE plots in Fig. S9 show the distributions of pIC50 values for each of the tyrosine kinase receptors across
the 270 inhibitors. Importantly, we do not claim that these predictions of inhibitory concentration are accurate with
respect to experimental determinations. We are only concerned with constructing a somewhat realistic optimization
problem to benchmark our feasibility-aware acquisition functions in a multi-objective setting.

4. Generation of physicochemical descriptors

To help guide optimization for the kinase inhibitor application, Atlas uses a physicochemical descriptor represen-
tation of the molecular template and alkyne options. We hand-select a set of 17 2d molecular descriptors from the
Mordred Python library.21 The descriptors are as follows: molecular weight (MW), topological radius (Radius), topolog-
ical diameter (Diameter), topological polar surface area (TopoPSA), rotable bonds ratio (RotRatio), number of rotable
bonds (nRot), bond polarizability (bpol), atomic polarizability (apol), number of hydrogen bond donor (nHBDon),
hybridization ratio (HybRatio), Wildman-Crippen LogP (SLogP), number of hydrogen bond donor (nHBDon), number
of SP3 carbon bound to 1 other carbon (C1SP3), number of SP2 carbon bound to 3 other carbons (C3SP2), number
of SP2 carbon bound to 2 other carbons (C2SP2), number of SP2 carbon bound to 1 other carbons (C3SP2), number
of heteroatoms (nHetero), and the number of heavy atoms (nHeavyAtom). The same set of descriptors are used for
both template and alkyne molecules, thus the descriptor vector x ∈ R34 is utilized by the optimizer.
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FIG. S9. KDE plots showcasing the distributions of pIC50 values for each of the 3 objectives.

D. Details of the hybrid organic-inorganic halide perovskite design application

Körbel et al. construct a search space of hybrid organic-inorganic perovskite (HOIP) materials accessed by chemical
substitution of the form A+B2+X−

3 (main text Fig. 4a).22 The goal of the screening was to find thermodynamically
stable HOIPs with small effective masses and optimal band gaps for photovoltaics. The search space consisted of 11
molecular cations (A), 29 divalent metals (B), and 4 halogens (X) for a total of 1276 possible HOIPs.

1. Geometric and electronic descriptors of HOIP components

To help guide optimization for the HOIP application, we represent the HOIP component options with vector-
valued descriptors, composed of geometric and electronic properties. Namely, the inorganic options are characterized
by their mass, electronegativity, electron affinity, and ionization energy. The organic compounds were characterized
by their molecular weight, radius of gyration, atomization energy, dipole moment norm, and frontier molecular
orbital energies. Molecular conformers are generated using OpenBabel23 and optimized using the xTB-GFN2 semi-
empirical Hamiltonian.24 Electronic descriptors were calculated at the HSEH1PBE/Def2QZVPP level of theory on
a SuperFineGrid with the Gaussian program package.25 Geometric descriptors were calculated with the Mordred
Python package.21 The radius of gyration was computed for the lowest energy conformer. In sum, a 14-element
descriptor vector is processed by the optimizer for this application, x ∈ R14.
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