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Active and transfer learning with Bayesian neural networks for materials and chemicals

Appendix 1

Figure[AT|shows the distribution of R-hat values across PBNN (0, 4) parameters aggregated over all active learning
steps for four different case studies: ESOL, FreeSolv, Steel fatigue, and HTEM datasets. All cases demonstrate good
convergence characteristics, with the majority of parameters having R-hat values close to 1.0. The distributions exhibit
a right-skewed pattern, which is expected in MCMC convergence diagnostics. There are, however, variations between
datasets - particularly, the Steel fatigue case shows a wider spread of R-hat values, which correlates with more volatile
NLPD values and slower Coverage convergence in early active learning steps. Nevertheless, most of the weights and
biases fall within the the range 1.0 < R-hat < 1.1, which is traditonally considered to indicate good convergence.
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Figure Al: Gelman-Rubin ‘R-hat’ values over all active learning steps for ESOL, FreeSolv, Steel fatigue, and HTEM
datasets.
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