
SI for “Nano Trees: Nanopore signal processing and sublevel fitting using Decision Trees” by D. Wadhwa et al.

Page 1 of 38

Supplementary Information:

Nano Trees: Nanopore signal processing and sublevel fitting using Decision Trees

Deekshant Wadhwa,1 Philipp Mensing,2 James Harden,2 Paula Branco,1 Vincent Tabard-Cossa2,
and Kyle Briggs2*

1Department of Computer Science, University of Ottawa, Canada. 2Department of Physics,
University of Ottawa, Canada

*Corresponding author: kbriggs@uOttawa.ca

Supplementary Section S1: The Nano Trees Pipeline

Supplementary Section S2: Updating current estimates

Supplementary Section S3: Merging small current steps.

Supplementary Section S4: Sublevel categorization

Supplementary Section S5: Splitting sublevels

Supplementary Section S6: Glossary of hyperparameters

Supplementary Section S7: Hyperparameter tuning

Supplementary Section S8: Hyperparameters used in this work

Supplementary Section S9: Dataset Summary

Supplementary Information (SI) for Digital Discovery.
This journal is © The Royal Society of Chemistry 2025

SI for “Nano Trees: Nanopore signal processing and sublevel fitting using Decision Trees” by D. Wadhwa et al.

Page 2 of 38

Supplementary Section S1: Nano Trees Pipeline

Nano Trees is a modular algorithm that ca be implemented in programming language, but the
version in this research has been implemented using Python 3.10.11 and scikit-learn 1.2.2.

Algorithms Used
Adaptive Boosting
The Adaptive Boosting Algorithm (a.k.a. AdaBoost)1,2 is an ensemble learning technique. It is a
meta-algorithm that learns by training several base learners and improves itself by learning from
their mistakes. In the domain of machine learning, base learners or weak learners are models that
perform slightly better than random chance. These can be Decision Trees, linear models, or any
model that is only slightly better than random guessing. AdaBoost uses them as building blocks
to create a strong ensemble predictive model through iterative training and re-weighting. Over
the iterations, it tries to reduce the weighted sum of mean square errors of each component
decision tree by updating the weight of these weak learners in the overall model according to
their individual performance.
Decision Trees

Decision Trees3,4 is a supervised machine learning algorithm that can be used both for classification
and regression and is used in several places in the Nano Trees pipeline. Decision Trees work by
grouping data into sections that are represented by a single value (a constant sublevel ionic current
blockage, in this context), which is then iteratively split into smaller sublevels until the mean-
squared error arising from this local approximation is minimized. Initially, we have a single root
node (or subevent), consisting of the entire event. In each step, the algorithm selects a unique
position in all sublevels at the lowest level of the tree, to split them where it achieves the best split
as measured by minimizing the least-squared error resulting after the split. This process is repeated
until the stopping criteria is met. These nodes are comparable to a piecewise constant
approximation of the data, such that data points that are close to each other in terms of their values
and time position can be well approximated by the same current value, representing a sublevel
over that region. By itself, this algorithm produces a high number of unphysical, false positive
sublevels, which is desirable in an initial pass which has the goal of avoiding any false negatives.

The input to this pass is a vector representing normalized current sampled at a constant time
interval. The output is a piecewise constant vector of current values that simplifies the signal by
locally grouping data points into regions of constant current based on proximity.

Sublevel Current Estimation Function

At each step of Nano Trees, the sublevel structure is updated, and the current value assigned to
each sublevel must be recalculated. This is done in a system-aware manner by considering the
ways in which our measurement distorts the signal. Because the duration of a sublevel affects the
extent of this distortion, we use a hyperparameter "shortSublevelDefinition" to split sublevels into
two categories based on whether they last long enough to reach a steady state.

SI for “Nano Trees: Nanopore signal processing and sublevel fitting using Decision Trees” by D. Wadhwa et al.

Page 3 of 38

For sublevels that have fewer data points than shortSublevelDefinition, the extreme values are used
as the current estimate. This means that the current value that is furthest from the previous sublevel
in absolute value is used as the estimate of the sublevel current, effectively using local noise to
offset systematic underestimation arising from finite bandwidth limitations. For all the other
sublevels, the average of the last 50% of the data points in the sublevel is taken as the sublevel
current. The specifics of this algorithm are discussed in Supplementary Section S2. In a few places
in the Nano Trees pipeline a different method is used to calculate the sublevel currents, which are
described when applicable.

Equipped with a high-level description of the algorithms used, we next present the Nano Trees
analysis pipeline of nanopore data.

Data Preprocessing

Before fitting, the current is normalized to [0,1]. This ensures that the hyperparameters used in
each pass have a similar effect on each event. It is important to note that the normalization is
done for each event individually.

Pass 1: Adaptive Boosting

SI for “Nano Trees: Nanopore signal processing and sublevel fitting using Decision Trees” by D. Wadhwa et al.

Page 4 of 38

Supplementary Figure S1: a) Example current trace generated from passing 12-arm star
nanostructures attached to a 2kbp dsDNA carrier through a ~13 nm pore (3.6 M LiCl, 75 mV) with
a measurement bandwidth of 1 MHz (sampled at 4.17 MHz) and digitally low-pass filtered for
fitting at 250 kHz taken from reference 5. b) The input (black line) and output (blue line) from the
first pass, consisting of the raw data (red dots) normalized to (0,1) and an overfitted piecewise
constant approximation using the AdaBoost algorithm, respectively.

We first employ the AdaBoost algorithm using Decision Trees as our weak learners from the scikit-
learn package 6. Note that these algorithms are not trained in the sense that the phrase is usually
used in deep learning, and do not require extensive training data as a result. Instead, during
prediction, AdaBoost categorizes data points that are close together in terms of values and time
into a distinct group. This entire group gets assigned a single representative current value, thereby
reducing any noise over this region. Employing an ensemble technique in this context mitigates
the occurrence of exaggerated false subdivisions, which otherwise would have been made by
individual iterations of Decision Trees.

The process is shown in Supplementary Figure S1, starting with the raw data in Supplementary
Figure S1a. After normalizing and optionally filtering the current signal, the input to this pass is a
vector of indices from 0 to n-1, where n is the number of data points that make up a single event.
It is important to note that we are using a separate AdaBoost model for each individual event,
rather than applying a single model across multiple events, as the size and characteristics of each
event can vary, and different signals may correspond to distinct physical processes occurring
within the nanopore. The expected output for this model is the current signal, normalized to [0,1.
The training is done using the default parameters in the scikit-learn package and the values set by
the user to limit the number of weak learners and their tree height, as discussed in Supplementary
Section S6. We do not expect the model to give a perfect piecewise constant function at this step;
rather, we want an overfit from this pass so as to not lose any physical sublevels while still
simplifying the input. This is shown in Figure 3b.

SI for “Nano Trees: Nanopore signal processing and sublevel fitting using Decision Trees” by D. Wadhwa et al.

Page 5 of 38

Pass 2: Decision Trees

Supplementary Figure S2: Example current caused by the passage of a partly folded 2 kbp
dsDNA polymer. Input and output of Pass 2 – Decision Trees. The input to pass 2 (black line) is
the output from pass 1. The output (blue line) is an overfitted but improved fit to the normalized
raw data (red dots).

The output from AdaBoost is a partially denoised signal containing many nonphysical sublevels,
giving an overfitted but simplified estimate of the sublevel structure of the event compared to the
raw data. Using the output vector from AdaBoost as our input, we apply a single decision tree from
the scikit-learn package6 to further reduce the noise in the signal to represent the piecewise constant
function more closely with the number of pieces in it being as close to the real count of sublevels
as possible in the same manner as Pass 1, using a vector of indices for training and prediction, but
this time the output of pass 1 is the expected outcome during the training of a single decision tree
model per event.

AdaBoost with decision trees in Pass 1 provides a gradual smoothing to not remove any sharp
spikes in the signal that could correspond to a real sublevel. But it was observed that after a fine
smoothing in Pass 1, a single decision tree in Pass 2 with a stronger ability to generalize performed
better in reducing even more noise, which is now even more clearly distinguishable from actual
narrow sublevels because of Pass 1. The output is close to our final fit visually, but usually still
contains some nonphysical sublevels which are identified and corrected in subsequent passes.
Supplementary Figure S2 shows an example of this pass.

SI for “Nano Trees: Nanopore signal processing and sublevel fitting using Decision Trees” by D. Wadhwa et al.

Page 6 of 38

Pass 3: Merge Small Current Steps

Supplementary Figure S3: Example normalized current (red dots) caused by the passage of an
unfolded 2 kbp dsDNA polymer. Input and output of Pass 3 – Merge Small Current Steps. The
input (black line) is the output from pass 2, while the output (blue line) is a smoothed version of
the fit with sublevels that have unphysically small steps merged between them.

The merging of small current steps or merging of similar current heights is the Pass 3 in the Nano
Trees algorithm that converts the partly denoised data into sublevels deemed to be physical based
on the user-provided hyperparameters, as shown in Supplementary Figure S3. This pass performs
3 major tasks, listed below.

Subpass 3.1 Boosting

In some cases, the effect of systemic distortion leads to an over- or under-estimate of the current
within the sublevel, which is detectable by considering the sign of the residuals of the local fit. To
avoid issues in which levels are erroneously merged due to inaccurate estimates, we first apply a
correction step. In cases where the local fit has residuals that are asymmetrically distributed about
zero, we apply a simple correction using two hyperparameters - "oneSidedPercentParity" and
"minDataPointsToBeBoosted". A sublevel needs correction if the absolute difference between the
number of positive residuals and negative residuals is greater than “oneSidedPercentParity.” If a
sublevel needs correction and it has more data points than “minDataPointsToBeBoosted” then the
sublevel current is estimated as either the mean of the last 50% of data in the sublevel, the data

SI for “Nano Trees: Nanopore signal processing and sublevel fitting using Decision Trees” by D. Wadhwa et al.

Page 7 of 38

point that deviates most from the previous sublevel, or the mean of the whole sublevel, depending
on which one results in minimal asymmetry in the sign of the resulting errors.

Subpass 3.2 Merging

Up to this point, the algorithm still tends to produce overfits. These are smoothed over by
combining neighboring sublevels into a single sublevel when the difference in current between
them is too small to represent a physical change, as defined by the user. The process of merging
small current steps requires several parameters, of which "numberOfStdAboveAndBelow" does the
major heavy lifting. We use this parameter to create a threshold, such that if any sublevel has a
current value within that threshold of its previous sublevel, then it is merged with it. The algorithm
for this procedure is discussed in detail in Supplementary Section S3.

Subpass 3.3 Refresh Estimates

In some cases, large deviations from the local sublevel current estimate within that sublevel can
lead to errors in sublevel classification downstream. We use the
"exceptionalHeightBaseMaxDiffForHeightRefresh" hyperparameter to update any sublevel if any
point within that sublevel deviates from the locally fitted current estimate by more than this value,
using the default sublevel current estimation function, as detailed in Supplementary Section S2.

Pass 4: Categorize and Correct Sublevels with Short Durations

SI for “Nano Trees: Nanopore signal processing and sublevel fitting using Decision Trees” by D. Wadhwa et al.

Page 8 of 38

Supplementary Figure S4: Examples of all four types of sublevels defined in nanopore data. a)
Normal sublevel (lasting long enough to reach a steady state), b) Peaked sublevel (not lasting long
enough to reach a steady state between current steps in opposite directions), c) Sloped sublevel
(not lasting long enough to reach a steady state between two current steps in the same direction),
and d) Bad sublevel (not classified into one of the previous categories).

It is often challenging to identify whether a short sublevel represents a physical change. Simply
removing them is not a solution as physical sublevels can often have short durations relative to the
system rise time. In this pass, we identify short sublevels and categorize them as follows:

1. Normal sublevels: Sublevels that last long enough to reach a steady state (Supplementary
Figure S4a), and do not require correction in this pass. This is determined by the
“minDataPointsToBeSubLevel” hyperparameter.

2. Peaked sublevels: Sublevels that do not last long enough to reach a steady state between
current steps in opposite directions (Supplementary Figure S4b).

3. Sloped sublevels: Sublevels that do not last long enough to reach a steady state between
two current steps in the same direction (Supplementary Figure S4c).

4. Bad sublevel: Any sublevel not classified into one of the previous categories
(Supplementary Figure S4d).

Full details are available in Supplementary Section S4.

SI for “Nano Trees: Nanopore signal processing and sublevel fitting using Decision Trees” by D. Wadhwa et al.

Page 9 of 38

Supplementary Figure S5: Input and output of Pass 4 – Categorize and Correct Sublevels with
Short Durations. The example current trace (red dots) is generated from passing 12-arm star
nanostructures attached to a 2 kbp dsDNA carrier through a ~13 nm pore (3.6 M LiCl, 75 mV)
with a measurement bandwidth of 1 MHz (sampled at 4.17 MHz) and digitally low-pass filtered
for fitting at 250 kHz. The input (black line) is the output from pass 3, while the output (blue line)
is an improved fit that corrects underestimates of current steps for sublevels that approach the time
resolution of the system.

After labelling as above, bad sublevels are merged with neighboring sublevels using the procedure
discussed in Supplementary Section S5. The hyperparameter “numberOfStdAboveAndBelow” is
used to decide exactly where such sublevels are split. Some peaked and sloped sublevels are also
merged, as determined by the additional hyperparameters discussed in Supplementary Section S3.
Supplementary Figure S5 presents an example of these steps.

Pass 5: Merge Small Current Steps (Repeat)

The previous pass removes most false positive sublevels. However, in some cases, sublevels that
survived Pass 4 could attain a current estimate close to each other. This requires a second call to
the Pass 3 function.

SI for “Nano Trees: Nanopore signal processing and sublevel fitting using Decision Trees” by D. Wadhwa et al.

Page 10 of 38

Pass 6: Clear Baseline

Supplementary Figure S6. Input and output of Pass 6 – Clear Baseline. Example normalized
current trace from the translocation of unfolded 2 kbp dsDNA. The input (black line) is the output
from pass 5, while the output (blue line) has suppressed any sublevels that were detected before
the beginning or after the end of the event.

Because this pipeline treats the baseline before and after the event as its own sublevel, it is possible
that the fits to this point have assigned more than one sublevel to the baseline current. These
sublevels are not physical and can simply be removed. Using the known start and endpoint of the
event, any sublevels that fall outside of these bounds are merged into a single baseline sublevel.
Supplementary Figure S6 presents an example of this step.

SI for “Nano Trees: Nanopore signal processing and sublevel fitting using Decision Trees” by D. Wadhwa et al.

Page 11 of 38

Pass 7: Backtrack

Supplementary Figure S7: Input and output of Pass 7 – Backtrack. Example normalized current
trace from the translocation of folded 2 kbp dsDNA. The input (black line) consists of the output
from pass 6, while the output (blue line) corrects minor errors in the time-indices of the changes
between sublevels that arose from previous passes.

Having now identified all physical sublevels in the event, we must correct their start and end time
to the proper data point to account for the system rise time, as previously discussed. We update
the starting point of each sublevel by iteratively calculating the sign of the difference between the
present point and the previous point in the backward direction, until it is the same as the sign of
the difference between the current estimate of the present sublevel and the current estimate of the
next sublevel, backtracking until we have reached the first point to depart from the previous
sublevel. For a bandwidth-limited system, this corresponds to the actual time at which the event
occurred, and the sublevel begins. Once all sublevels have been backtracked, the current estimates
are updated using the default sublevel current estimation function and the new sublevel time
bounds, as shown in Supplementary Figure S7.

SI for “Nano Trees: Nanopore signal processing and sublevel fitting using Decision Trees” by D. Wadhwa et al.

Page 12 of 38

Post-Processing

Supplementary Figure S8: Input and output of Post-Processing. Having corrected the start and
end times, this pass applies one final check to ensure accurate baseline level fitting.

For the results presented in this work, we finish the fitting process with slight restorations detailed
below.

The current estimate of the Slope sublevel is slightly adjusted based on the mean of the last 50%
of data, replacing the present current estimate if it reduces the ratio of data points above and below
it, as shown in Supplementary Figure S8. The event is then denormalized using original maximum
and minimum values. Finally, event-based information, including the number of sublevels,
sublevel changepoints, and sublevel current estimates, is extracted and stored for further testing
and analysis. Supplementary Figure S9 represents a sample fit of this entire algorithm.

SI for “Nano Trees: Nanopore signal processing and sublevel fitting using Decision Trees” by D. Wadhwa et al.

Page 13 of 38

Supplementary Figure S9: A sample event fit by the Nano Trees algorithm for the same current
trace as in Figure 3.

More passes can be added or repeated to further improve the fit, but the seven passes described
above that are combined to create Nano Trees strike a balance between approximation (fitting a
smaller number of larger sublevels) and detail (fitting many smaller sublevels), ensuring that we
can accurately characterize the current fluctuations occurring within the nanopore as molecules
translocate through.

SI for “Nano Trees: Nanopore signal processing and sublevel fitting using Decision Trees” by D. Wadhwa et al.

Page 14 of 38

Supplementary Section S2: Updating current estimates

SI for “Nano Trees: Nanopore signal processing and sublevel fitting using Decision Trees” by D. Wadhwa et al.

Page 15 of 38

Supplementary Section S3: Merging small current steps.

SI for “Nano Trees: Nanopore signal processing and sublevel fitting using Decision Trees” by D. Wadhwa et al.

Page 16 of 38

Supplementary Section S4: Sublevel categorization

SI for “Nano Trees: Nanopore signal processing and sublevel fitting using Decision Trees” by D. Wadhwa et al.

Page 17 of 38

Supplementary Section S5: Splitting sublevels

SI for “Nano Trees: Nanopore signal processing and sublevel fitting using Decision Trees” by D. Wadhwa et al.

Page 18 of 38

Supplementary Section S6: Glossary of hyperparameters

Pass 1: AdaBoost

 approxSubLevelEstimate – It is the maximum depth of Decision trees. This parameter
controls how deep the Decision tree is allowed to grow. The deeper the tree is, the more
accurate its predictions will be and the more overfitted the result will be. A shallower tree
will have fewer levels and be a rougher approximation to the data. At this stage, we want
the predictions to only be accurate enough to extract a general structure in the signal
without losing so much information that the overall shape is lost. If the sublevels seem to
be missing due to this pass, increase this value.

 adaBoostRegressorNEstimators – This is the number of Decision trees used during
boosting. It is similar to approxSubLevelEstimate and controls how accurate the
predictions will be in this pass. If the sublevels seem to be missing due to this pass, increase
this value.

Pass 2: Decision Trees

 approxSubLevelEstimate – Same as in Pass 1, but keep this value as high as possible to
reduce noise in the system without losing the overall shape. Even if a few heights are
incorrect after this pass, further passes will try to recover them but the shape should be
maintained as is while tuning this parameter.

Pass 3: Merge Small Current Steps

 numberOfStdAboveAndBelow – This parameter (multiplied by baseline standard
deviation internally) controls the height difference between any two consecutive sublevels.
If the height of a sublevel is within the range of previous height ± this threshold then these
two sublevels are merged into one.

 minDataPointsToBeBoosted – Before merging takes place, some sublevels are to be
boosted (Height correction using height function) so that they are not wrongly merged
into/with another sublevel. If the number of data points in a sublevel is greater than this
parameter, only then is it considered for boosting. This is done such that extremely narrow
sublevels do not get boosted and eventually in some cases, wrongly establish a false
positive sublevel.

 oneSidedPercentParity – Not all sublevels considered for boosting are actually boosted.
The percentage of data points above and below a sublevel is calculated, and only if their
absolute difference is greater than this threshold, only then is that sublevel boosted.

 exceptionalHeightBaseMaxDiffForHeightRefresh – After boosting and merging, in some
extreme cases, certain sublevels may still exhibit inaccurate height values. To address this
for these sublevels, we calculate the absolute difference between the highest data point and
sublevel height, and between the lowest data point and the sublevel height. If the maximum

SI for “Nano Trees: Nanopore signal processing and sublevel fitting using Decision Trees” by D. Wadhwa et al.

Page 19 of 38

of these two values exceeds this parameter, then the height of these sublevels is updated
using the height function.

Pass 4: Categorize and Correct Sublevels with Short Durations

 minDataPointsToBeSubLevel – Any sublevel that is shorter than this (number of data
points) parameter (and is not exceptional) is deleted, and its data points are split into the
sublevels to its left and right.

 numberOfStdAboveAndBelow – This parameter (multiplied by baseline standard
deviation) is used to distribute data points of a deleted sublevel. Any data point within this
threshold range of the previous sublevel height becomes a part of the previous sublevel,
and all data points after (and including) the first data point outside this range become part
of the sublevel to the right of the deleted sublevel.

 exceptionalPeak_MinHeightStdAboveAndBelow – This parameter is used while
determining whether a sublevel is an exceptional peaky sublevel. The absolute difference
between the height of a sublevel and both the previous and next sublevel height should be
greater than this parameter (multiplied by baseline standard deviation).

 exceptionalPeak_WidthLowerBound – This parameter is used while determining whether
a sublevel is an exceptional peaky sublevel. The exceptional peaky sublevel should have
more data points in it than this parameter.

 exceptionalPeak_BaseDifferenceStdAtleast – This parameter is used while determining
whether a sublevel is an exceptional peaky sublevel. The absolute difference between the
height of the previous sublevel and the height of the first non-exceptional sublevel after the
current sublevel should be greater than this parameter (multiplied by baseline standard
deviation).

 exceptionalSlope_WidthLowerBound – This parameter is used while determining whether
a sublevel is an exceptional slope sublevel. The exceptional slope sublevel should have
more data points in it than this parameter.

 exceptionalSlope_MinHeightStdOfMinDiff – This parameter is used while determining
whether a sublevel is an exceptional slope sublevel. The minimum of absolute height
difference between the current and previous sublevel, and between the current and next
sublevel should be greater than this parameter (multiplied by baseline standard deviation).

Pass 5: Merge Small Current Steps (Repeat)

(Same as Pass 3)

Pass 6: Clear Baseline

 baselineStdThreshold – All sublevels in the range of baseline height ± this parameter are
deleted and considered as baseline before finding the largest event in this pass.

SI for “Nano Trees: Nanopore signal processing and sublevel fitting using Decision Trees” by D. Wadhwa et al.

Page 20 of 38

Pass 7: Backtrack

(Backtracking does not require any parameters because it is direction based. A tolerance parameter
can be added if extremely precise sublevel positions are required or if the noise present in the event
is significantly high which was not removed in previous passes. The tolerance parameter will
control how many opposite direction data points to ignore before reaching the absolute point of
inflection used as the sublevel end point.)

Post-Processing

 directionalThreshold – If the ratio of data points above and below the height of a sublevel
is greater than this parameter then other height functions are used to minimize that ratio.

Sublevel Current Estimation Function

 shortSublevelDefinition – Sublevels that have more data points than this parameter have
their heights calculated by the mean of the last 50% of the data points in them. The
remaining sublevels have too few data points, inasmuch that their height is determined to
be equal to the most extreme point in that sublevel.

Supplementary Section S7: Hyperparameter tuning

The simplest way to tune hyperparameters is to select a few representative example events and set
the parameters while visualizing the resulting fits. This process is cumbersome, and development
is ongoing to simplify the process. Starting from the default values provided, these parameters can
be varied depending on the desired outcome. For example, if a user requires that every sublevel be
detected no matter how small, the user could increase the hyperparameters of the first 2 passes to
significantly higher value, set the “minDataPointsToBeSublevel” to a smaller value (just outside
the noise region), and the corresponding “numberOfStdAboveAndBelow” to a lower value as well.
The exceptional parameters can be ignored because we plan to keep most of the suspected
sublevels in the fit as is. The rest of the parameters in all the passes can be kept as default. This
will overfit the data, allowing the fit to retain most of the sublevels and experiment-based filtering
can be later applied based on users' experimental requirements.

For the purpose of correlating function names used in the code and the pass names used to refer
them in this research, the following mapping can be used, Supplementary Figure S10 represents
the use of these names with the corresponding hyperparameters used along with their importance:

 Pass 1 Adaptive Boosting - ensemble_adaboost_decession_tree
 Pass 2 Decision Trees - single_decession_tree
 Pass 3 Merge Small Current Steps - mergeSimilarHeights_withIterativeHeightUpdates

SI for “Nano Trees: Nanopore signal processing and sublevel fitting using Decision Trees” by D. Wadhwa et al.

Page 21 of 38

 Pass 4 Categorize and Correct Sublevels with Short Durations -
splitSublevelWithSmallWidths_withExceptionalSmallButTallSublevels

 Pass 5 Merge Small Current Steps (Repeat) - mergeSimilarHeights
 Pass 6 Clear Baseline - clear_baseline_using_longest_event_only
 Pass 7 Backtrack - backtrack_last_point_directional
 Post-Processing - slope_height_adjust
 Sublevel Current Estimation Function - l50_max_height or height function

Supplementary Figure S10: Nano Trees pipeline with all functions and corresponding
hyperparameters.

SI for “Nano Trees: Nanopore signal processing and sublevel fitting using Decision Trees” by D. Wadhwa et al.

Page 22 of 38

The hyperparameters can be divided into two categories based on their importance in the fit as
follows:

1. Required Hyperparameters – these parameters cannot be left at their default values and
need to be specifically tuned to each experimental context.

2. Optional Hyperparameters – these hyperparameters are used for minute adjustments to the
fit and in most cases the default values are suitable or can be disabled for fast results.

The tuning of optional hyperparameters can be skipped for quick results and/or debugging, but
essential hyperparameters control the essence of the fitting procedure and can end up making or
ruining a perfect fit. The hyperparameters are also segregated based on specificity:

1. Setup specific hyperparameters – these hyperparameters can remain consistent throughout
most experiments done using the same setup. This does not mean that these should not be
changed, but if multiple datasets are recorded using the same setup and the fitting works
well on some and not on the others, then it is highly unlikely that these hyperparameters
need adjustment. They could be adjusted, but the user should first focus on adjusting other
hyperparameters and settings.

2. Experiment specific hyperparameters – these hyperparameters require a good adjustment
for different experiments based on what biomolecules are used in the experiment, expected
sublevels, baseline/noise characteristics, etc. Any major issue while setting these
hyperparameters can degrade the fit quality significantly.

Hyperparameters used in this work are broken down according to these descriptions in
Supplementary Tables S1 and S2.

Supplementary Table S1: Description of combination of required, optional, setup specific, and
experiment specific hyperparameters.

Required
Hyperparameters

Less tuning required but tune them
well at least once for every new
setup.

Change these for every experiment to
get the best fits. These need to be
debugged first if the fits are bad.

Optional
Hyperparameters

Set them once, or use the default ones
for most cases.

Much tuning is not required, but they
can greatly affect the fit quality if
tuned well.

Setup specific hyperparameters Experiment specific hyperparameters

SI for “Nano Trees: Nanopore signal processing and sublevel fitting using Decision Trees” by D. Wadhwa et al.

Page 23 of 38

Supplementary Table S2: Hyperparameters classified into 4 categories based on Table S1
descriptions.

Required
Hyperparam
eters

numberOfStdAboveAndBelow
baselineStdThreshold

approxSubLevelEstimate
minDataPointsToBeSubLevel
shortSublevelDefinition

Optional
Hyperparam
eters

exceptionalHeightBaseMaxDiffForHe
ightRefresh
oneSidedPercentParity
directionalThreshold

adaBoostRegressorNEstimators
minDataPointsToBeBoosted
exceptionalPeak_MinHeightStdAbov
eAndBelow
exceptionalPeak_WidthLowerBound
exceptionalPeak_BaseDifferenceStdA
tleast
exceptionalSlope_MinHeightStdOfMi
nDiff
exceptionalSlope_WidthLowerBound
(Approximate Event Location)

Setup specific hyperparameters Experiment specific hyperparameters

Default Values & effect of increasing and decreasing each hyperparameter during tuning-

Pass 1: AdaBoost

approxSubLevelEstimate

 Default Value: 5
 Increasing it will increase the maximum depth of Decision trees allowed throughout the

AdaBoost ensemble. This will allow for more accurate fits but will also open the room for
overfitting and ultimately forcing this pass to have no overall effect on the fit.

 Decreasing it will increase the maximum depth of Decision trees in the AdaBoost
ensemble. Doing this will allow for more relaxed fits, thereby reducing the noise but still
maintaining the correct shape of the event. Decreasing it too low could cause the fit to lose
its overall shape, and to an extent from where it might not even be recovered by further
passes.

adaBoostRegressorNEstimators

 Default Value: 500
 Increasing it will increase the number of Decision trees used during boosting, providing a

more accurate fit but also increasing the time taken to generate results. It has a similar
effect on the fits as the “approxSubLevelEstimate” hyperparameter. Users are advised to
maintain a good balance between the two hyperparameters for a good and efficient fit.

SI for “Nano Trees: Nanopore signal processing and sublevel fitting using Decision Trees” by D. Wadhwa et al.

Page 24 of 38

 Decreasing it will decrease the number of Decision trees used during boosting. This will
allow the algorithm to terminate quicker at the cost of fit quality. It has a similar effect on
the fits as “approxSubLevelEstimate” and should hence be tuned accordingly.

Pass 2: Decision Trees

approxSubLevelEstimate

 Default Value: 5
 Increasing and/or decreasing it has the same effect as the hyperparameter with the same

name in pass 1.

Pass 3: Merge Small Current Steps

numberOfStdAboveAndBelow

 Default Value: 2.2
 Increasing it will increase the threshold within which 2 sublevels are merged. The threshold

is also proportional to baseline standard deviation, so if baseline standard deviation is too
high, this parameter should not be increased by much.

 Decreasing it decreases the merging threshold.

minDataPointsToBeBoosted

 Default Value: 20
 Increasing it will increase the number of data points a sublevel needs to have for it to be

boosted before further processing can take place in this pass.
 Decreasing it lowers the number of data points a sublevel needs to have for it to be boosted.

oneSidedPercentParity

 Default Value: 0.2
 Increasing it increases the parity threshold required for sublevel boosting. Since parity

determines the ratio of datapoints above and below the current sublevel estimate, a higher
threshold means fewer sublevels will be boosted overall. Decreasing it decreases the parity
threshold required for sublevel boosting. This means more sublevels would have a parity
higher than the threshold; hence, more sublevel boosting would be done.

exceptionalHeightBaseMaxDiffForHeightRefresh

 Default Value: 0.35
 Increasing it raises the threshold that a sublevel needs to cross for its current estimate to be

refreshed.

SI for “Nano Trees: Nanopore signal processing and sublevel fitting using Decision Trees” by D. Wadhwa et al.

Page 25 of 38

 Decreasing it lowers the threshold that a sublevel needs to cross for its current estimate to
be refreshed.

Pass 4: Categorize and Correct Sublevels with Short Durations

minDataPointsToBeSubLevel

 Default Value: 2% event length
 Increasing it makes the sublevels shorter than this hyperparameter get added to the

exceptional sublevels queue where they are judged using the criterion of an exceptional
slope or an exceptional peak and deleted if it satisfies none of them.

 Decreasing it allows shorter sublevels to exist as-is, without any additional exceptional
sublevel checks.

 numberOfStdAboveAndBelow

 Default Value: 2
 Increasing it extends the threshold below which the proportion of a removed sublevel is

shifted to the left sublevel. Simultaneously, it also diminishes the proportion of the deleted
sublevel transferred to the right sublevel. This adjustment depends on how much the
deleted sublevel falls below the baseline standard deviation multiplied by the
hyperparameter threshold of the sublevel to the left of the removed sublevel.

 Decreasing it lowers the threshold for shifting the deleted sublevel proportion to the left,
while concurrently increasing its transfer to the right.

exceptionalPeak_MinHeightStdAboveAndBelow

 Default Value: 3
 Increasing it increases the absolute sublevel current estimate delta between the sublevel and

the previous sublevel, and the sublevel and the next sublevel required to get removed from
being an exceptional peaked sublevel.

 Decreasing it decreases that absolute delta and hence allows more, exceptional peaked
sublevels to be present in the final fit that do not vary much in terms of sublevel current
estimate from its previous and next sublevel.

exceptionalPeak_WidthLowerBound

 Default Value: 0.2% event length
 Increasing it raises the threshold for the minimum number of data points an exceptional

peaked sublevel requires to not get deleted. A sublevel falls to the category of being

SI for “Nano Trees: Nanopore signal processing and sublevel fitting using Decision Trees” by D. Wadhwa et al.

Page 26 of 38

exceptional if it has less than “minDataPointsToBeSubLevel” number of datapoints, hence,
if this hyperparameter “exceptionalPeak_WidthLowerBound” is set equal to greater than
“minDataPointsToBeSubLevel” then all exceptional peaked sublevels are discarded.

 Decreasing it lowers the requirement of the minimum number of data points an exceptional
peaked sublevel requires not to get deleted. It cannot be negative, and if it is set to 0, then
this check of the minimum number of data points for exceptional peaked sublevels is
discarded and other tests are used to check whether to keep or discard this sublevel.

exceptionalPeak_BaseDifferenceStdAtleast

 Default Value: 0
 Increasing it increases the sublevel current estimate delta between the next and the previous

non exceptional sublevels.
 Decreasing it decreases the sublevel current estimate delta between the next and the

previous non-exceptional sublevels. Setting it to 0 disables this check to determine whether
to keep an exceptional peaked sublevel but other non-disabled tests are used.

exceptionalSlope_WidthLowerBound

 Default Value: 10% event length
 Increasing it raises threshold for the minimum number of data points an exceptional slope

sublevel requires to not get deleted. A sublevel falls to the category of being exceptional if
it has less than “minDataPointsToBeSubLevel” number of datapoints, hence, if this
hyperparameter “exceptionalSlope_WidthLowerBound” is set equal to greater than
“minDataPointsToBeSubLevel” then all exceptional peaked sublevels are discarded.

 Decreasing it lowers the requirement of the minimum number of data points an exceptional
slope sublevel requires not to get deleted. It cannot be negative, and if it is set to 0, then
this check of the minimum number of data points for exceptional slope sublevels is
discarded and other tests are used to check whether to keep or discard this sublevel.

exceptionalSlope_MinHeightStdOfMinDiff

 Default Value: 2.2
 Increasing it increases the threshold that the minimum of sublevel current estimate delta

between the current and the previous and current and the next sublevel must cross to pass
this check for being an exceptional slope sublevel.

 Decreasing it decreases this threshold.

Pass 6: Clear Baseline

baselineStdThreshold

SI for “Nano Trees: Nanopore signal processing and sublevel fitting using Decision Trees” by D. Wadhwa et al.

Page 27 of 38

 Default Value: 1.5
 Increasing it increases the threshold under which any sublevel before the approximate start

value and after the approximate end value is merged to the baseline.
 Decreasing it decreases this threshold for deleting non-primary fits in the event.

Post-Processing

directionalThreshold

 Default Value: 0.5
 Increasing it increases the threshold a sublevel must cross for the ratio of maximum

between the count of increasing and decreasing values and the number of points in the
sublevel for its current estimate to be set as the mean of the last 50% of data points in the
sublevel.

 Decreasing it decreases this threshold for the sublevel current estimate of this threshold to
be set as the mean of the last 50% of data points in the sublevel.

 Sublevel Current Estimation Function

shortSublevelDefinition

 Default Value: 2% event length
 Increasing it raises the threshold under which a sublevel is termed as short and its sublevel

current estimate is set as the extreme value in the sublevel, and over this it is calculated
using the mean of last 50% of the sublevel. Increasing it to a very high value forces all the
sublevel current estimates in the fit to be set to the extreme values in the corresponding
sublevels.

 Decreasing it lowers this threshold, and when set to a very low value forces all the sublevel
current estimates to be calculated using the mean of the last 50% of the data in each
sublevel.

Pass 5 has the same configuration as Pass 3 and Pass 7 does not have any hyperparameters.
Debugging hyperparameters to fix specific issues can be a complicated task, Supplementary
Figures S2-S8 describe steps for some common hyperparameter tuning procedures.

Supplementary Figures S11-S17 present flow charts for procedural optimization of fit parameters
in new experimental contexts.

SI for “Nano Trees: Nanopore signal processing and sublevel fitting using Decision Trees” by D. Wadhwa et al.

Page 28 of 38

Supplementary Figure S11: Flow chart describing debugging steps to improve the
hyperparameters in case slopes or peaks are missing in the fit.

SI for “Nano Trees: Nanopore signal processing and sublevel fitting using Decision Trees” by D. Wadhwa et al.

Page 29 of 38

Supplementary Figure S12: Flow chart describing debugging steps to adjust
approxSubLevelEstimate.

SI for “Nano Trees: Nanopore signal processing and sublevel fitting using Decision Trees” by D. Wadhwa et al.

Page 30 of 38

Supplementary Figure S13: Flow chart describing debugging steps to adjust confidence
parameters.

SI for “Nano Trees: Nanopore signal processing and sublevel fitting using Decision Trees” by D. Wadhwa et al.

Page 31 of 38

Supplementary Figure S14: Flow chart describing debugging steps to adjust exceptional
parameters for peaks.

SI for “Nano Trees: Nanopore signal processing and sublevel fitting using Decision Trees” by D. Wadhwa et al.

Page 32 of 38

Supplementary Figure S15: Flow chart describing debugging steps to adjust exceptional
parameters for slopes.

SI for “Nano Trees: Nanopore signal processing and sublevel fitting using Decision Trees” by D. Wadhwa et al.

Page 33 of 38

Supplementary Figure S16: Flow chart describing debugging steps to improve the
hyperparameters if normal sublevels are missing in the fit.

SI for “Nano Trees: Nanopore signal processing and sublevel fitting using Decision Trees” by D. Wadhwa et al.

Page 34 of 38

Supplementary Figure S17: Flow chart describing debugging steps to improve the
hyperparameters if the fit is overfitted, which means there are extra physically possible sublevels
in the fit.

SI for “Nano Trees: Nanopore signal processing and sublevel fitting using Decision Trees” by D. Wadhwa et al.

Page 35 of 38

Supplementary Section S8: Hyperparameters used in this work.

Synthetic Dataset

Pass 1: Adaptive Boosting
 approxSubLevelEstimate = 10
 adaBoostRegressorNEstimators = 800

Pass 2: Decision Trees
 approxSubLevelEstimate = 10

Pass 3: Merge Small Current Steps
 numberOfStdAboveAndBelow = 2.5
 oneSidedPercentParity = 0.2
 minDataPointsToBeBoosted = 2% event length
 exceptionalHeightBaseMaxDiffForHeightRefresh = 0.35

Pass 4: Categorize and Correct Sublevels with Short Durations
 minDataPointsToBeSubLevel = 8
 numberOfStdAboveAndBelow = 2
 exceptionalPeak_MinHeightStdAboveAndBelow = 3
 exceptionalPeak_WidthLowerBound = 8
 exceptionalPeak_BaseDifferenceStdAtleast = 0
 exceptionalSlope_MinHeightStdOfMinDiff = infinity
 exceptionalSlope_WidthLowerBound = infinity

Pass 5: Merge Small Current Steps (Repeat)
 numberOfStdAboveAndBelow = 3.2

Pass 6: Clear Baseline
 baselineStdThreshold = 1.5

Post-Processing
 directionalThreshold = 0.5

Sublevel Current Estimation Function
 shortSublevelDefinition = 16

SI for “Nano Trees: Nanopore signal processing and sublevel fitting using Decision Trees” by D. Wadhwa et al.

Page 36 of 38

DNA Nanostructures Barcodes

Pass 1: Adaptive Boosting
 approxSubLevelEstimate = 4
 AdaBoostRegressorNEstimators = 500

Pass 2: Decision Trees
 approxSubLevelEstimate = 4

Pass 3: Merge Small Current Steps
 numberOfStdAboveAndBelow = 2
 oneSidedPercentParity = 0.2
 minDataPointsToBeBoosted = 20
 exceptionalHeightBaseMaxDiffForHeightRefresh = 0.35

Pass 4: Categorize and Correct Sublevels with Short Durations
 minDataPointsToBeSubLevel = 60
 numberOfStdAboveAndBelow = 2
 exceptionalPeak_MinHeightStdAboveAndBelow = 3
 exceptionalPeak_WidthLowerBound = 10
 exceptionalPeak_BaseDifferenceStdAtleast = 0
 exceptionalSlope_MinHeightStdOfMinDiff = 2.2
 exceptionalSlope_WidthLowerBound = infinity

Pass 5: Merge Small Current Steps (Repeat)
 numberOfStdAboveAndBelow = 4.5

Pass 6: Clear Baseline
 baselineStdThreshold = 1.5

Post-Processing
 directionalThreshold = 0.5

Sublevel Current Estimation Function
 shortSublevelDefinition = 80

SI for “Nano Trees: Nanopore signal processing and sublevel fitting using Decision Trees” by D. Wadhwa et al.

Page 37 of 38

Supplementary Section S9: Dataset Summary
Raw data used in this work is provided in the Federated Research Data Repository, available at
https://doi.org/10.20383/103.01212.

Synthetic Dataset

Synthetic data was generated using Python’s numpy==1.26.3 and scipy==1.11.4 libraries in
Python 3.11 to simulate nanopore signal behavior. A piecewise constant signal was constructed
and modified using a response function based on previously published nanopore measurement
models. Zero-mean white noise was added to achieve a signal-to-noise ratio of 6, ensuring
distinguishable transitions. The signal was sampled at 5 MHz and low-pass filtered to 1 MHz
using a 4-pole zero-phase Bessel filter to remove high-frequency components. The dataset
includes 31,500 events across seven distinct classes of transient signal features, with
Supplementary Script 1 provided alongside this work for reproducibility.

DNA Nanostructures Barcodes

This dataset was collected using a Chimera VC100 instrument at a sampling rate of 4.1667 MHz.
It contains the translocation of specially designed molecules consisting of a double-stranded
DNA backbone with specific binding sites for side chains. These side chains carry DNA
nanostructures shaped like stars, with either 4 or 12 arms, which generate distinct signal
blockages when passing through a nanopore. The molecules are deliberately asymmetric to allow
for clear identification of their orientation during translocation. Events are labeled as “10” or
“01” based on which star—4-arm or 12-arm—appears first. The recorded signals were low-pass
filtered at 250 kHz using an 8-pole Bessel filter implemented via scipy.signal.bessel() and
scipy.signal.filtfilt() for noise reduction.

As this dataset lacks ground truth for its piecewise constant signal levels, a manual labeling
process was used to evaluate the fitting accuracy of two algorithms: Nano Trees and CUSUM+.
Each event was independently evaluated by a neutral third-party reviewer who judged the fit
quality of both methods with a simple “Yes” or “No” response. These responses were used to
calculate fitting accuracy, where a higher proportion of “Yes” votes signified better performance.
In the dataset provided, the label applied by the expert reviewer is indicated by the name of the
folder in which the dataset is found.

The folder names in which an event is found corresponds the category to which the event
belongs, as manually assessed by an expert human reviewer.

https://doi.org/10.20383/103.01212

SI for “Nano Trees: Nanopore signal processing and sublevel fitting using Decision Trees” by D. Wadhwa et al.

Page 38 of 38

References

(1) Freund, Y.; Schapire, R. E. A Decision-Theoretic Generalization of On-Line Learning and an
Application to Boosting. J Comput Syst Sci 1997, 55 (1), 119–139.
https://doi.org/10.1006/jcss.1997.1504.

(2) Drucker, H. Improving Regressors Using Boosting Techniques. Proceedings of the 14th
International Conference on Machine Learning 1997.

(3) Hastie, T.; Friedman, J.; Tibshirani, R. The Elements of Statistical Learning; Springer New York:
New York, NY, 2001. https://doi.org/10.1007/978-0-387-21606-5.

(4) Breiman, L.; Friedman, J. H.; Olshen, R. A.; Stone, C. J. Classification And Regression Trees;
Routledge, 2017. https://doi.org/10.1201/9781315139470.

(5) Roelen, Z.; Briggs, K.; Tabard-Cossa, V. Analysis of Nanopore Data: Classification Strategies for an
Unbiased Curation of Single-Molecule Events from DNA Nanostructures. ACS Sens 2023, 8 (7),
2809–2823. https://doi.org/10.1021/acssensors.3c00751.

(6) Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.;
Prettenhofer, P.; Weiss, R.; Dubourg, V.; others. Scikit-Learn: Machine Learning in Python. the
Journal of machine Learning research 2011, 12, 2825–2830.

