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Note 1: Empirical Perovskite Power Conversion Efficiency Model Background 

The empirical power conversion efficiency (PCE) model is based on our previously reported 
Bayesian optimization (BO) experiment to maximize the PCE of flexible perovskite solar cells.1 
These perovskite solar cells were made using a novel annealing process called photonic curing. 
Photonic curing uses a flash xenon lamp to deliver intense photon pulses (20 μs–100 ms) with a 
broadband spectrum (200–1500 nm).2 The perovskite precursor films absorb radiant energy from 
the light pulses and become crystallized.  

To use BO to maximize the PCE, we selected as input features the four most critical synthesis 
parameters that determine the perovskite solar cell characteristics: (1) perovskite precursor 
concentration (in M), (2) additive diiodomethane volume (in µL), (3) pulse voltage (in V), which 
determines the light intensity, and (4) pulse length (in ms). The ranges for each of these features 
are given in Table S1. In the BO posterior model computation, each feature is normalized to the 
interval [0, 1], with 0 corresponding to the minimum and 1 corresponding to the maximum value 
of each feature’s range. The normalized feature values are labeled x1, x2, x3, x4, respectively, so the 
input predictors are 4-D vectors X = (x1, x2, x3, x4), whose domain is the hypercube [0, 1]4. The 
output objective is the predicted solar cell PCE.  

Experimental data from 48 solar cells were used to train a Random Forest ensemble model with 
four base learners: Gradient Boosting, Gaussian Process, Random Forest, and Neural Network, 
which gave us best predicting capability among other base learners. This ensemble model serves 
as the ground truth function for the acquisition functions tested in the main text. To evaluate the 
PCE model at the new predictor points recommended by the acquisition functions, the model is 
gridded into a look-up table with the (unnormalized) intervals below. These intervals correspond 
to the step size used to vary each feature in the real experiment. 

Table S1 Four-dimensional input parameters space 

Input Parameters (Unit) Dimension Range (Interval)* 
Perovskite Precursor Concentration (M) x1 1.2 - 1.6 M (0.05 M) 
Additive Diiodomethane Volume (µL) x2 0 - 250 µL (5 µL) 
Pulse Voltage (V) x3 200 - 440 V (5 V) 
Pulse Length (ms) x4 1 - 100 ms (1 ms) 

*Before normalization 
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Note 2: Computational Time and Memory Usage 

All code was implemented in Python and run in normal mode (CPU only) on the Lonestar6 system 
of the Texas Advanced Computing Center. The Emukit package was used for UCB/LP and 
logEI/LP, and the BoTorch package was used for all Monte Carlo parallel batch acquisition 
functions.  

Each 50-iteration Bayesian optimization campaign used 2 GB of random-access memory. 

 
Problem 

Acquisition 
Function 

Mean “wall clock” time for 
one 50-iteration Bayesian 

optimization campaign 
(sec) 

 
Ackley  6D 
(needle-in-
haystack) 

UCB/LP 105 
qUCB 80 
qlogEI 105 
qlogEI+Turbo 100 

Hartmann 6D 
no noise 

(false maximum) 

UCB/LP 90 
qUCB 85 
qlogEI 110 

 
Hartmann 6D 

with noise  
(false maximum) 

UCB/LP 90 
qUCB 75 
qlogEI 100 
qlogNEI 110 

PCE Model 4D 
(flat landscape, 

real noise/errors) 

UCB/LP 65 
qUCB 70 
qlogNEI 85 

 

  



 S3 

Note 3: Rationale for Main Bayesian Optimization Setting Choices 

Setting Choice Reason 
ARD Matern 5/2 kernel for 
Gaussian Process regression 

The ARD Matern 5/2 function is a standard GP regression kernel widely used when 
modeling real data. ARD (Automatic Relevance Detection) allows for different 
characteristic length scales in each input dimension,1 which is always the case for 
real experimental inputs. Because the Matern 5/2 function is discontinuous in its 
second derivative, it is better able to model possibly non-smooth functions that 
often occur in real-world problems when compared to the radial basis function 
(Gaussian) kernel more favored in theoretical studies. 

Kernel hyperparameter 
tuning by maximizing 
likelihood 

Maximizing statistical likelihood (or log likelihood) is a standard and widely used 
method to tune the Gaussian Process regression kernel’s hyperparameters. This is 
the default hyperparameter tuning method used in most GP software packages in 
Python (including BoTorch and Emukit used for this paper) and Matlab.  

b = 2 for the exploration-
exploitation parameter value 
for UCB/LP and qUCB 

Integer values of b between 1 and 7 were tried with only minor differences that do 
not affect the conclusions presented in this paper. This is consistent with Diessner, 
et al.,2 who found performance of UCB-type acquisition functions to be insensitive 
to b values between 1 and 5. We settled on b = 2 because it gave somewhat better, 
but representative, overall results. Since this work is not meant as a study of the 
effects of b , it was decided to fix b = 2 for all UCB-related acquisition functions. 

Acquisition function 
optimization methods 

Used default acquisition function optimization methods in Python packages 
Emukit and BoTorch. 

Batch size q = 4 Common experimental batch size in new materials synthesis and processing 
experiments. 

TuRBO for domain 
narrowing on the Ackley 
function in 6-dimensions 

Publicly available Python code implementing TuRBO with BoTorch3 is available 
and was suitable for our needs. 
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Fig. S1. Surface contour plots of ground truth (a) Ackley function A(X), (b) Hartmann function H(X), and (c) PCE 
model PCE(X), projected onto one coordinate plane. The input vector X = (x1, x2, x3, x4, x5, x6) for Ackley and 
Hartmann functions and X = (x1, x2, x3, x4) for the PCE model. The z-axis values form a surface defined by the 
maximum value associated with each (x1, x2) for A(X) and PCE(X) or each (x2, x4) H(X) projected out from all other 
components of X. In all plots “´” indicates the ground truth maximum (GT Max). In (b) a red star indicates the false 
maximum. 



Fig. S2. Learning progression data on the noiseless Ackley (top row) and Hartmann (bottom row) test functions for 
serial batch acquisition function logEI/LP. µ(X*) and ||X* – Xmax|| have the same meanings as in Fig. 2 in the main 
text. The ground truth ymax and Xmax are indicated by yellow dashed lines. Gray points show the spread in learning 
progress of the 99 campaigns starting from the 99 different initial data sets. Green, red, and blue points indicate the 
runs ranked in the top 25th, 50th, and 75th percentile, respectively, as defined in the main text.
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Fig. S3a. Box and violin plots showing the distribution of instantaneous regret (IR) and cumulative regret (CR) data 
corresponding to Table 1 in the main text for the four batch acquisition functions used on the Ackley test function. 
Each dot represents the IR or CR result of a 50-iteration batch Bayesian optimization campaign starting from one of 
the 99 initialization conditions selected by Latin hypercube sampling. Here, y is the objective value, and X is the input 
of the function being optimized.
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Fig. S3b. Box and violin plots showing the distribution of instantaneous regret (IR) and cumulative regret (CR) data 
corresponding to Table 2 in the main text for the three batch acquisition functions used on the Hartmann test function 
without noise. Each dot represents the IR or CR result of a 50-iteration batch Bayesian optimization campaign starting 
from one of the 99 initialization conditions selected by Latin hypercube sampling. Here, y is the objective value, and 
X is the input of the function being optimized.
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Fig. S3c. Box and violin plots showing the distribution of instantaneous regret (IR) and cumulative regret (CR) data 
corresponding to Table 3 in the main text for the three batch acquisition functions used on the PCE model test 
function. Each dot represents the IR or CR result of a 50-iteration batch Bayesian optimization campaign starting 
from one of the 99 initialization conditions selected by Latin hypercube sampling. Here, y is the objective value, and 
X is the input of the function being optimized.
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Fig. S4. Time lapse video clips showing the bBO learning progression on the Ackley function using (a) serial 
UCB/LP and (b) MC qUCB bAFs. The z-axis surfaces are the maximum value the GPR model gives for each (x1, x2) 
projected out from all other components of X, after each iteration. The ground truth maximum (GT Max) is indicated 
by a blue “´”. Blue circles indicate the initial set of 24 points picked by Latin hypercube sampling. New batch points 
picked by the bAF are shown circles progressing in color from light pink (early iterations) to dark red (later 
iterations).
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