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Text S1
In this work, the ESS, EDS, and <Δd> were calculated respectively. The calculation 

equations are shown as follows (1-3): 

(1)𝐸𝑆𝑆 = 𝐸𝑝𝑢𝑟𝑒 + 𝑋 + 𝑌 + 𝐸𝑆1 ‒ 𝐸𝑝𝑢𝑟𝑒 + 𝑌 ‒ 𝐸𝑋

(2)𝐸𝐷𝑆 = 𝐸𝑝𝑢𝑟𝑒 + 𝑋 + 𝑌 + 𝐸𝑆1 + 𝐸𝑆2 ‒ 𝐸𝑝𝑢𝑟𝑒 ‒ 𝐸𝑋 ‒ 𝐸𝑌

where X and Y are double-site substitution elements in α-Nb5Si3.  is the 𝐸𝑝𝑢𝑟𝑒 + 𝑋 + 𝑌

total energy of the α-Nb5Si3 system after double-site substitution calculated by DFT; 

 is the energy of pristine α-Nb5Si3 with Y site substitution elements;  and 𝐸𝑝𝑢𝑟𝑒 + 𝑌 𝐸𝑆1

 are the total energy per atom of pure Nb or Si crystal, respectively.  and  are 𝐸𝑆2 𝐸𝑋 𝐸𝑌

the crystalline single-atom energy of each alloying element.

(3)
< Δ𝑑 >=

1
𝑛

∗
𝑛

∑
𝑖 = 1

(|𝑟'
𝑖 ‒ 𝑟 '

0| ‒ |𝑟𝑖 ‒ 𝑟0|)

where <Δd> is the average bond length change of the local structure, the  and  are 𝑟𝑖 𝑟'
𝑖

positions of substitution elements before and after ion relaxation in the crystal structure, 

and  and  are the positions of the i-th atom in the substitution element’s nearest 𝑟0 𝑟 '
0

neighbor n atoms before and after ion relaxation in the crystal structure, respectively.

All computational simulations were conducted utilizing Density Functional 

Theory (DFT) as integrated within the Vienna Ab-initio Simulation Package (VASP) 

software[1,2]. We employed the Perdew-Burke-Ernzerhof (PBE) parametrization for 

the generalized gradient approximation (GGA-PBE) [3,4] to calculate the exchange-

correlation energy. The interactions between core and valence electrons were 

approximated using Projector-Augmented Wave (PAW) potentials. The kinetic energy 

cutoff for the wave functions was established at 450 eV. For α-Nb5Si3, a Gamma-

centered k-mesh of 5 × 5 × 3 was applied to discretize the Brillouin zone (BZ). The 

total energy calculations were refined to a convergence threshold of 1 × 10-5 eV, while 

the forces were converged with an accuracy of less than 0.02 eV/Å. Taking into account 

the dilute concentration of the alloying elements, lattice relaxation was initially carried 

out within the α-Nb5Si3 systems. Subsequently, ionic relaxation was executed under the 

constraint of maintaining a constant cell volume and shape.



3



4

Table S1 Non-equivalent substitution pairs with the corresponding site 
distances in α-Nb5Si3 studied in this work.

System Sites
Non-equivalent 

site pair
Site distance (Å)

Number of systems 
studied in this work

XNbIYSiI 2.59 196
XNbIYSiII 2.99 196

NbI 
site

XNbIYNbII 3.05 196
XSiIYSiI 2.42 196
XSiIYNbI 2.59 196
XSiIYNbII 2.62 196

α-Nb5Si3 
more closely 
packed layer SiI 

site
XSiIYNbII 2.66 196

XNbIIYSiI 2.62 196
XNbIIYSiI 2.66 196

NbII 
site

XNbIIYSiII

XNbIIYNbII

XNbIIYNbI

XNbIIYNbII

XNbIIYNbII

XNbIIYNbII

XNbIIYNbII

2.75
2.88
3.05
3.11
3.26
3.49
3.57

196
196
196
196
196
196
196

XSiIIYNbII 2.75 196

α-Nb5Si3 less 
closely 

packed layer

SiII 
site XSiIIYNbI 2.99 196
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Table S2 Elementary properties used in the feature construction.
Abbreviate

# Features
Center Environment

1 Atomic number, start counting left top, left-right sequence AN_C AN_E
2 Atomic weight AW_C AW_E
3 Charge, nuclear effective (Clementi) CH_C CH_E
4 Density DS_C DS_E
5 Distance, core electron (Schubert) Molar DC_C DC_E
6 Distance, valence electron (Schubert) Moment DV_C DV_E
7 Electronegativity (Martynov and Batsanov) EN_C EN_E
8 Energy, cohesive Brewer EC_C EC_E
9 Energy of ionization, first EI_C EI_E

10 Enthalpy of melting EM_C EM_E
11 Mendeleev Pettifor MP_C MP_E
12 Nuclear charge, effective NC_C NC_E
13 Quantum number QN_C QN_E
14 Radius, covalent RC_C RC_E
15 Radius, metal (Waber) RM_C RM_E
16 Temperature, melting TM_C TM_E
17 Thermal neutron capture cross-section TN_C TN_E
18 Valence electron number VE_C VE_E
19 Bulk modulus BM_C BM_E
20 Periodic number PN_C PN_E
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Text S2 Chemical composition (CC) feature model

The Chemical Composition (CC) feature model is constructed by the local 

chemical composition information, excluding the information of crystal structural[5]. 

This approach is also applied to model the chemical composition of double-site 

substitutions in α-Nb5Si3.

Similar to the construction of the Center-Environment (CE) features, the CC 

feature model can be expressed as follows.

(4)D =  [D1, …, Di, …, Dn, T], (e.g., n =  20)

(5)Di =  [dC, i, dE, i], i =  1, 2,… , n

(6)dC, i = pC, i

(7)
dE, i =  

N

∑
j = 1

ωE, jpE, j,i

(8)

ωE, j =  
rm

j

N

∑
j = 1

rm
j

 (m =  0)

where  is the i-th property of the j-th environment atom. When m= 0,  is 𝑝𝐸,𝑗,𝑖 𝜔𝐸,𝑗

essentially a normalized factor so that the local chemical composition is naturally taken 

into account after the summation over all local environment atoms.
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Text S3

In this study, after establishing modeling algorithms for both supporting vector 

regression and random forest regression, the next step was to enhance model 

performance through hyper-parameter optimization. Given that each method possesses 

a multitude of tunable hyper-parameters, a comprehensive exploration of each would 

demand substantial computational resources. To address this, we conducted a series of 

iterative experiments, ultimately deciding to employ a grid search optimization 

approach for a select set of critical parameters. This strategy effectively identified the 

optimal configuration. The parameters that underwent optimization are detailed in the 

list that follows.

Table S3 Modeling hyper-parameter optimization candidates
Regression algorithm Parameter List

C: 0.1, 1, 10, 100,1000Support Vector Regression (SVR)

kernel: RBF

gamma: 0.001, 0.01, 0.1, 0.5

Random Forest (RF) n_estimators: 20, 50, 70

max_depth: 3, 4, 5, 7, 10

min_samples_split: 2, 4, 6, 10
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Table S4 Prediction performance of α-Nb5Si3 by the CENN model with different 

weights  ( ).rm
j

m =  - 1, -
1
2

CENN ( 1/r)ωj =  CENN( 1/ )ωj =  𝑟

SVR RF SVR RF

Target 
property

Perfor
mance  
metric

Train Test Train Test Train Test Train Test

R2 0.90 0.89 0.92 0.82 0.94 0.92 0.94 0.85

MAE 383.27 421.79 397.37 612.24 323.82 345.37 351.95 528.40

ESS

(meV)

RMSE 586.46 641.44 513.06 808.46 481.81 487.05 451.69 692.18

R2 0.91 0.90 0.87 0.81 0.93 0.92 0.91 0.82

MAE 352.27 384.36 493.55 638.43 327.84 372.95 417.26 573.34EDS

(meV) RMSE 531.66 560.77 632.19 803.57 486.23 524.68 533.91 750.93

R2 0.77 0.72 0.88 0.74 0.81 0.75 0.86 0.75
MAE 6.29 7.99 6.04 8.0 6.83 10.90 6.53 9.62<Δd>

(10-2Å) RMSE 11.59 13.23 8.49 11.90 11.44 11.99 9.33 11.60
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Table S5 Prediction performance of α-Nb5Si3 by the CEAET model with different 

weights  ( ).rm
j

m =  - 1, -
1
2

CEAET ( 1/r)ωj =  CEAET( 1/ )ωj =  𝑟

SVR RF SVR RF

Target 
property

Perform
ance  
metric

Train Test Train Test Train Test Train Test

R2 0.96 0.95 0.95 0.89 0.95 0.94 0.95 0.90

MAE 258.01 278.65 328.10 480.17 277.99 324.68 320.46 471.96ESS

(meV) RMSE 397.44 409.86 425.08 627.95 414.46 459.52 415.82 621.26
R2 0.95 0.93 0.86 0.81 0.94 0.93 0.95 0.89

MAE 276.74 329.43 486.73 578.16 317.95 339.29 309.98 506.63EDS

(meV) RMSE 416.49 465.83 675.40 780.35 476.85 498.75 393.20 661.31
R2 0.80 0.72 0.85 0.74 0.85 0.74 0.84 0.74

MAE 6.37 7.50 6.29 7.81 7.04 8.20 7.76 7.80<Δd>
(10-2Å) RMSE 10.80 12.01 11.19 13.92 11.19 13.92 10.96 15.16
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Table S6 Prediction performance of α-Nb5Si3 by the CC model.
CC model

SVR RF
Target 

property
Perform

ance  
metric Train Test Train Test

R2 0.32 0.29 0.33 0.32
MAE 1228.03 1266.92 1210.74 1298.51ESS

(meV) RMSE 1545.38 1624.56 1535.84 1545.96
R2 0.67 0.65 0.71 0.68

MAE 667.86 810.91 684.61 829.79EDS

(meV) RMSE 1029.65 1084.57 970.28 1020.40
R2 0.48 0.46 0.49 0.35

MAE 11.43 13.33 11.57 12.69<Δd>
(10-2Å) RMSE 16.93 20.79 16.90 19.11
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Table S7 GCN Model Parameter Settings
Parameter Value Description Scope

nfeat 32 Input node feature dimension (din) All graphs

nhid 64
Hidden layer dimension of the first GCN 

layer (dhid)
All graphs

nclass 16
Output dimension of the second GCN layer 

(dmid)
Intermediate 

layer
node_num 100 Fixed number of nodes per graph (NN) All graphs

nout 1 Final output dimension of the model (dout)
Fully 

connected 
layer

readout "linear"
Graph-level feature aggregation strategy 

(options: "mean" or "linear")
Entire graph

dropout 0.5
Dropout rate for regularization (applied 

during training)
Training 
phase
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Table S8 GAT Model Parameter Settings
Parameter Value Description Scope

in_features 64 Input feature dimension (din) Node-level

out_features 32 Output feature dimension(dout) Node-level

dropout 0.6
Dropout rate for randomly masking 

attention weights
Training 
phase

node_num 0.2
Negative slope coefficient for LeakyReLU 

activation

Attention 
coefficient 

computation

alpha True
Whether to apply ELU activation and 

concatenate multi-head outputs
Node-level
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ALIGNN model Parameter

Table S9 RBFExpansion Parameter Settings
Parameter Value Description Type

vmin 0
Minimum value of RBF centers 

(normalized input range, e.g., bond 
lengths)

float

vmax 8
Maximum value of RBF centers 

(normalized input range, e.g., bond 
lengths)

float

bins 40
Number of RBF centers (controls feature 

resolution)
int

lengthscale None
Width parameter (σ) of Gaussian kernels. 

If None, auto-calculated as (vmax - 
vmin)/bins

float

Table S10 ALIGNN Key Parameter Settings

Parameter Value Description Type

triplet_input_features 32
Dimension of angle features after 
RBF embedding (matches bins in 

RBFExpansion)
int

hidden_dim 64
Hidden layer dimension of graph 

convolution layers (controls model 
capacity)

int

num_conv_layers 5
Number of alternating graph 

convolution iterations (atom-line graph 
updates)

int
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Table S11 Prediction results of substitution energies in α-Nb5Si3 using 
different machine learning algorithms.

Sites
Targe

t
Performance  

metric
GBR LGBM XGB

R2 0.88 0.922 0.923
RMSE 529.69 419.72 418.04ESS

MAE 359.52 328.22 338.33
R2 0.933 0.893 0.934

RMSE 387.08 508.52 383.85

NbI

EDS

MAE 282.70 345.70 287.98
R2 0.879 0.854 0.884

RMSE 430.90 498.96 467.76ESS

MAE 307.34 384.92 340.12
R2 0.928 0.919 0.900

RMSE 397.78 421.95 481.78

NbII

EDS

MAE 291.22 308.54 331.23
R2 0.962 0.956 0.969

RMSE 508.38 543.84 459.77ESS

MAE 341.02 373.56 326.41
R2 0.963 0.928 0.960

RMSE 421.91 584.23 434.43

SiI

EDS

MAE 306.75 434.21 317.17
R2 0.874 0.855 0.877

RMSE 445.99 597.58 557.02ESS

MAE 279.73 448.18 383.81
R2 0.906 0.911 0.923

RMSE 520.96 591.88 542.28

SiII

EDS

MAE 333.85 445.23 378.25
R2 0.954 0.941 0.949

RMSE 451.12 500.80 461.58ESS

MAE 311.43 362.87 324.63
R2 0.934 0.925 0.937

RMSE 521.98 529.91 512.91

Nb5Si3

EDS

MAE 348.53 386.75 372.60
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Fig. S1 The non-equivalent substitution sites of α-Nb5Si3 (a) NbI, (b) SiI, (c) 

NbII, and (d) SiII.
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Fig. S2 Statistical plots of target data (ESS, EDS, and <d>), where (a)-(c) 

were for the substitution of alloying elements in α-Nb5Si3.
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H He
Li Be B C N O F Ne
Na Mg Al Si P S Cl Ar
K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
Cs Ba * Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn

(g)

Fig. S3 The distribution of the 14 substituted alloying elements in the 

periodic table for the α-Nb5Si3 structures, with dark green representing the 

substitution elements.
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Fig. S4 (a, d) ESS, (b, e) EDS, (c, f) <Δd> of α-Nb5Si3 predicted by the CENN 

models with SVR and RF algorithms with = 1/r.𝜔𝑗
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Fig. S5 (a, d) ESS, (b, e) EDS, (c, f) <Δd> of α-Nb5Si3 predicted by the CENN 

models with SVR and RF algorithms with = 1/ .𝜔𝑗 𝑟
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Fig. S6 (a, d) ESS, (b, e) EDS, (c, f) <Δd> of α-Nb5Si3 predicted by the CEAET 

models with SVR and RF algorithms with = 1/r.𝜔𝑗
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Fig. S7 (a, d) ESS, (b, e) EDS, (c, f) <Δd> of α-Nb5Si3 predicted by the CEAET 

models with SVR and RF algorithms with = 1/ .𝜔𝑗 𝑟
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Fig. S8 Heat maps of EDS projected on the substitution pair sites containing 

NbI in α-Nb5Si3 predicted by (a, c, e) DFT and (b, d, f) ML, respectively.
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Fig. S9 Heat maps of EDS projected on the substitution pair sites containing 

NbII in α-Nb5Si3 predicted by (a, c, e) DFT and (b, d, f) ML, respectively.
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Fig. S9 (continued) Heat maps of EDS projected on the substitution pair sites 

containing NbII in α-Nb5Si3 predicted by (g, i, k) DFT and (h, j, l) ML, 

respectively.
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Fig S9 (continued) Heat maps of EDS projected on the substitution pair sites 

containing NbII in α-Nb5Si3 predicted by (m, o, q) DFT and (n, p, r) ML, 

respectively.
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Fig. S10 Heat maps of EDS projected on the substitution pair sites containing 

SiI in α-Nb5Si3 predicted by (a, c, e, g) DFT and (b, d, f, h) ML, respectively.
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Fig. S11 Heat maps of EDS projected on the substitution pair sites containing 

SiII in α-Nb5Si3 predicted by (a, c) DFT and (b, d) ML, respectively.
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Fig. S12 Feature analysis of EDS in α-Nb5Si3 based on SHAP method. (a) 
Feature importance ranked by SHAP. (b) SHAP value distribution of different 
samples.
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Fig S13 Performance metrics of CEAET-SVR ML models in the leave-p-out 

cross validation for each of the 14 elements in α-Nb5Si3 phase: (a, c) R2 and 

(b, d) MAE of ESS and EDS, respectively. The R2 plot were truncated to -0.2. 

Both the training and test dataset results are shown for comparison.
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Fig. S14 Conventional cell of β-Nb5Si3 crystal structure with four non-

equivalent sites NbI, NbII, SiI, and SiII.
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Fig. S15 Correlation matrix of features related to the machine learning 
prediction of double-site substitution energy in Nb5Si3.
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