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Section 1. Clarification of the compositional design space

In multi-component alloy composition design, discrete step sizes (e.g., 1%, 0.2%, 0.1%) are 
typically used to adjust the compositional values of different elements, subject to the constraint that 
the sum of all components equals 100%. All possible composition points satisfying both "non-
negativity" and "normalization" (sum to 100%) constraints form a simplex space. For an n-
component system, the composition space constitutes an (n-1)-dimensional simplex. When 
additional constraints are applied to this simplex space based on domain knowledge, such as 
requiring certain elements to have compositions greater than 10%, the feasible solutions form a 
subset within a simplex space, with all valid alloy compositions lying either within, or on the 
vertices/edges of this polytope.

To illustrate the rapid growth of the number of possible compositions with respect to the number of 
components, let us consider a simplified scenario where: a) Each element's composition uses a step 
size of 1%; b) Compositions range within [0, 100%]. Under these conditions, each component can 
take discrete values of 0%, 1%, 2%, ..., 100%. The problem of finding all possible discrete 
composition points can be transformed into a combinatorial mathematics problem: finding the 
number of non-negative integer solutions to the equation:
𝑥1 + 𝑥2 + … + 𝑥𝑛 = 100% ,

where  represents the composition value of the n-th element. This can be solved using the "stars 𝑥𝑛

and bars" theorem, yielding:

𝐶 𝑛 ‒ 1
100 + 𝑛 ‒ 1 =

(𝑛 + 99)!
100! ∙ (𝑛 ‒ 1)!

 ,

(𝑛 + 99)!
(𝑛 ‒ 1)!

= 𝑛 ∙ (𝑛 + 1) ∙ ⋯ ∙ (𝑛 + 99) ≈ 𝑛100, 𝑤ℎ𝑒𝑛 𝑛 → + ∞ .

In practical multi-component alloy design, since elements typically have non-zero lower bounds 
(e.g., based on domain knowledge) for their compositions, the feasible compositions form a convex 
polytope subset. If with smaller compositional step sizes in optimization, this will lead to a rapid 
polynomial growth with respect to the number of possible compositions. Therefore, exhaustively 
enumerating all possible compositions (essentially a brute force approach) becomes 
computationally prohibitive for high-dimensional discrete compositional spaces. While various 
optimization techniques exist for continuous problems, the discrete nature and constraints of alloy 
composition design present unique challenges. For these specific challenges, implementing 
gradient-based methods for composition design offers a promising direction within the inner loop 
of BO to identify promising compositions. This rapid polynomial growth demonstrates why efficient 
optimization strategies are crucial for exploring high-dimensional compositional spaces.

It is worth noting that the choice of 0.1% as the compositional step size aligns with practices in 
materials design literatures [1-4]. This precision is particularly justified in cases like shape memory 
alloys (SMAs), where minor variations (0.1%) in the composition of key elements (e.g., Ti, Ni) can 
significantly affect phase transformation behaviors [5]. In fact, we do not always have a priori 
knowledge on how sensitive material properties are to compositional changes across different 
concentration ranges, making this fine-grained exploration necessary, although such precision may 
not be required for all cases.



Section 2. Formal formulation of the inner loop

Within the BO framework, the experimental optimization of materials properties involves solving 
the following inner optimization [6] problem:
𝑎𝑟𝑔𝑚𝑎𝑥𝑐 ∈ 𝐶𝛼(𝑐) ,

where α(·) represents the acquisition function, which here is calculated based on the mean and 
uncertainty predictions from the surrogate model, but could be purely focused on exploitation or 
exploration as well. The composition vector c needs to satisfy the following constraints:

𝐶 = {〈𝑥1,𝑥2,…,𝑥𝑛 〉 | 𝑥𝑖 ∈ 𝐷𝑖, 
𝑛

∑
1

𝑥𝑖 = 100%} .

Here,  represents the alloy composition vector, where Di denotes the set of possible 〈𝑥1,𝑥2,…,𝑥𝑛 〉

discrete compositional values for the i-th element. These formulations capture both the optimization 
objective and the constraints in alloy design: each element's composition must fall within its allowed 
range , and the sum of all compositional values must equal 100% (normalization constraint).𝑥𝑖 ∈ 𝐷𝑖

The acquisition function α(·) plays a crucial role in balancing exploration and exploitation during 
the optimization process. It utilizes both the predicted mean and the associated uncertainty from the 
surrogate model to guide the search for optimal compositions. This inner loop optimization problem, 
while mathematically well-defined, presents significant computational challenges due to the high-
dimensional compositional space and the multi-modal landscape of the acquisition function, which 
is particularly the case we consider in this work.

Section 3. Formulations of GPR, α(·), feature transformations and the numerical 
estimation of AF gradients with respect to c

Gaussian Process Regression (GPR)
Given a set of training data X with corresponding target values y under noise-free conditions, GPR 
enables us to predict both the mean (μ) and standard deviation (σ) at any test point x. We denote the 
GPR as g(·). The mathematical formulation is as follows:
𝜇 = 𝐾(𝑋, 𝑥)𝑇𝐾(𝑋, 𝑋) ‒ 1𝑦 ,
𝜎2 = 𝐾(𝑥,𝑥) ‒ 𝐾(𝑋,𝑥)𝑇𝐾(𝑋, 𝑋) ‒ 1𝐾(𝑋, 𝑥) ,
where K(X, x) represents the kernel matrix between training data X and the test point x, K(X, X) 
represents the kernel matrix among training points and K(x, x) represents the self-covariance at the 
test point x.

For measuring the similarity between compositional points, we employ the Matérn 5/2 kernel 
function:

𝑘(𝑥, 𝑥') = 𝜎𝑓
2(1 +

5𝑟
𝑙

+
5𝑟2

3𝑙2)exp ( ‒
5𝑟
𝑙 ) ,

where r = ||x - x'|| is the Euclidean distance between input points x and x',  is the signal variance 𝜎𝑓
2



and l is the length scale parameter. The training process of GPR involves optimizing the kernel 
hyperparameters (e.g.,  and l) by maximizing the marginal likelihood, ensuring the model best 𝜎𝑓

explains the observed data. This kernel choice ensures differentiability with respect to the 
input x except at the point where x equals x′, which is crucial for our gradient-based optimization 
approach.

Acquisition Functions
For the acquisition functions, we consider three commonly used ones: Expected Improvement (EI), 
Probability of Improvement (POI), and Upper Confidence Bound (UCB), which are defined as 
follows:

𝑍 =
(𝜇 ‒ 𝜇 + )

𝜎
 ,

𝛼𝐸𝐼 = {(𝜇 ‒ 𝜇 + )Φ(𝑍) + 𝜎𝜙(𝑍), 𝑖𝑓𝜎 > 0 
0, 𝑖𝑓 𝜎 = 0 �,

𝛼𝑃𝑂𝐼 = {Φ(𝑍), 𝑖𝑓 𝜎 > 0 
0, 𝑖𝑓 𝜎 = 0 �,

𝛼𝑈𝐶𝐵 = 𝜇 + 𝜅𝜎 ,

where  is the best experimental observation within X, is the normal cumulative distribution 𝜇 + Φ(·) 
function, is the normal probability density function and κ is a parameter for tuning the degree 𝜙(·) 

of exploration.
These considered acquisition functions maintain differentiability with respect to input, exhibiting 
piecewise differentiability except at points where σ(·) = 0. However, this piecewise differentiability 
does not pose significant challenges for current state numerical optimization methods.

Feature Transformations

Table S1 Mathematical formulas for transforming elemental properties into material features

�̅� =
𝑛

∑
𝑖 = 1

𝑐𝑖 ∙ 𝐸𝑖

𝛿𝐸 =
𝑛

∑
𝑖 = 1

𝑐𝑖 ∙ (1 ‒ 𝐸𝑖 �̅�)

𝑀𝐴𝑋.𝐸 = max (𝐸𝑖), 𝑓𝑜𝑟 𝑐𝑖 ≠ 0

𝑀𝐼𝑁.𝐸 = min (𝐸𝑖), 𝑓𝑜𝑟 𝑐𝑖 ≠ 0

𝑅𝑎𝑛𝑔𝑒.𝐸 =  𝑀𝐴𝑋.𝐸 ‒ 𝑀𝐼𝑁.𝐸

𝑀𝐴𝑋𝐶.𝐸 = 𝑐𝑗 ∙ 𝐸𝑗, 𝑤ℎ𝑒𝑟𝑒 𝑐𝑗 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑐𝑖, 𝑐𝑖 ≠ 0𝐸𝑖

𝑀𝐼𝑁𝐶.𝐸 = 𝑐𝑗 ∙ 𝐸𝑗, 𝑤ℎ𝑒𝑟𝑒 𝑐𝑗 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑐𝑖, 𝑐𝑖 ≠ 0𝐸𝑖

𝑅𝑎𝑛𝑔𝑒𝐶.𝐸 = 𝑐𝑗 ∙ 𝐸𝑗 ‒ 𝑐𝑘 ∙ 𝐸𝑘, 𝑤ℎ𝑒𝑟𝑒 𝑐𝑗 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑐𝑖, 𝑐𝑖 ≠ 0𝐸𝑖 𝑎𝑛𝑑 𝑐𝑘 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑐𝑖, 𝑐𝑖 ≠ 0𝐸𝑖



Table S1 presents the mathematical formulas used to transform elemental properties into material 
features [7]. Here, ci represents the molar fraction of element i, Ei denotes the corresponding 
elemental property value, and n is the total number of elements in the composition. These 
transformations enable the conversion of discrete elemental properties into continuous material 
features that can effectively capture composition-property relationships. To enable gradient-based 
optimization, we implemented differentiable versions of the mathematical formulas shown in Table 
S1. A key challenge was to make the argmax/argmin operations differentiable. The traditional 
argmax operation returns an index of the maximum value, which is non-differentiable. We 
addressed this by implementing a "soft" version that produces a probability distribution over indices 
using the softmax function:
𝑤 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝜏 ∙ 𝑥) ,
where τ is a temperature parameter (set to 1×10⁶ in our implementation) that controls the sharpness 
of the approximation, and w represents the weight distribution across all positions. As τ approaches 
infinity, the weights w approach a one-hot vector with 1 at the position of the maximum value, 
effectively approximating the behavior of argmax while maintaining differentiability. For numerical 
stability, we also incorporated a small position-dependent epsilon sequence (decreasing from 1×10⁻⁴ 
to 0) to break potential ties in the input values.

The soft argmin operation is implemented analogously using softmax(-x). These differentiable 
operations are particularly crucial for MAXC.E, MINC.E, and RangeC.E calculations, where the 
gradient information needs to be properly propagated through the selection of maximum and 
minimum values. Additionally, we applied a sigmoid function with the same temperature parameter 
to smooth the compositional masks used for filtering zero-concentration elements:
𝑚𝑎𝑠𝑘 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝜏 ∙ (𝑐 ‒ 𝜀)) ,
where c represents the element-wise compositions and ε is a small threshold (1×10⁻⁵). This 
comprehensive differentiable implementation ensures stable gradient flow through the entire 
optimization process while closely approximating the original mathematical formulations.

Numerical Gradient Estimation of Acquisition Functions

We only provide a glimpse here. The foundation of this numerical gradient estimation approach lies 
in the fundamental properties of GPR. GPR can be understood as a weighted sum of basis functions 
in an infinite-dimensional function space, which is guaranteed by Mercer's theorem. To numerically 
estimate the gradient value of acquisition functions, we first utilize the following formulation [8]:

𝛼(𝑥;Θ,𝐷) = 𝐸[𝑢(𝑔(𝑥), Θ)|𝐷]≅�̂�𝑁𝑓
(𝑥;Θ,𝐷) =

1
𝑁𝑓

𝑁𝑓

∑
𝑖 = 1

𝑢(𝜉 𝑖
𝐷(𝑥),Θ) ,

where  represents function samples drawn from the posterior distribution , D represents 𝜉 𝑖
𝐷(𝑥)  𝑔𝐷(·)

the training dataset (i.e., the experimented materials), Θ are parameters independent of x (e.g., κ in 
UCB) and u(·) is a utility function that defines the acquisition function α(·). In the case of EI, the 
u(·) refers to .𝑚𝑎𝑥(𝑔(𝑥) ‒ 𝜇 + , 0)



The gradient estimation process follows these steps:
a) Starting with the basic form of gradient estimation:

∇𝑥�̂�𝑁𝑓
(𝑥;Θ,𝐷) = ∇𝑥(

1
𝑁𝑓

𝑁𝑓

∑
𝑖 = 1

𝑢(𝜉 𝑖
𝐷(𝑥),Θ)) .

b) Applying the chain rule yields:

∇𝑥�̂�𝑁𝑓
(𝑥;Θ,𝐷) =

1
𝑁𝑓

𝑁𝑓

∑
𝑖 = 1

∇𝜉𝑢(𝜉 𝑖
𝐷(𝑥),Θ) ∙ ∇𝑥𝜉 𝑖

𝐷(𝑥) .

c) By introducing  as the auxiliary variable related to the posterior distribution (i.e., the ℎ𝐷(𝑥, 𝜖)

reparameterization trick), we can express:
∇𝑥𝑢(𝜉 𝑖

𝐷(𝑥),Θ) = ∇𝜉𝑢(𝜉 𝑖
𝐷(𝑥),Θ) ∙ ∇𝑥ℎ𝐷(𝑥, 𝜖) .

This ensures that  is transformed into a differentiable deterministic function , 𝜉~𝑔𝐷(·) 𝜉 = ℎ𝐷(𝑥, 𝜖)

and stochasticity is only related with , not x.𝜖

d) The complete gradient expression becomes:

∇𝑥�̂�𝑁𝑓
(𝑥;Θ,𝐷) =

1
𝑁𝑓

𝑁𝑓

∑
𝑖 = 1

∇𝜉𝑢(𝜉 𝑖
𝐷(𝑥),Θ) ∙ ∇𝑥ℎ𝐷(𝑥, 𝜖) .

This derivation demonstrates how we can compute numerical gradients through the 
reparameterization of posterior samples, which is particularly effective when implemented within 
GPR using (function) samples drawn from a posterior distribution. 

For subsequent use in gradient ascent/descent, we can leverage this gradient information to obtain 

x*, specifically conditioned on D, facilitated by N drawn  samples: 𝜉 𝑖
𝐷(𝑥)

.𝑥 ∗
𝑁 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑥 = 𝑋�̂�𝑁(𝑥;Θ, 𝐷)

For the computational pipeline from materials features to GPR predictions and then to AF values, 
we utilized BoTorch [8], which is built on GPyTorch [9] and leveraged PyTorch [10] for forward 
computational graph and backward gradient propagation. For detailed implementation of this part, 
interested readers may refer to Balandat et. al. [8].

For the transformation from composition to materials features, we self-implemented this part and 
bridged it with the aforementioned framework, also leveraging PyTorch, to achieve stable gradient 
flow from AF back to compositions, i.e., the numerical gradient vector with respect to each 
composition variable. When utilizing this gradient vector in SLSQP optimization [11], special 
consideration must be given to constraints. In fact, our choice of SLSQP was partially motivated by 
its ability to handle linear constraints on inputs effectively.

We now summarize the whole computational pipeline as Table S2:



Table S2. Overview of the computational pipeline and its gradient computation. The pipeline is 
decomposed into three main transformations: from compositions to material features, surrogate 
predictions and acquisition function values. For each transformation, we specify the input-output 
relationship, function notation, based on which we implemented, and the corresponding 
gradient/Jacobian computation.

Function Name Input → Output
Function 

Notation
Implementation

Gradient Vector /

Jacobian Matrix†

Feature Transformation 

Function

composition → material 

features
ε(·) self-implemented ∇𝑐𝜀

Gaussian Process 

Regression

material features →

surrogate predictions
g(·) ∇𝜀𝑔

Acquisition Function
surrogate predictions → 

acquisition function value
α(·)

BoTorch

∇𝑔𝛼

Note: † We use ∇ for both gradient vector and Jacobian matrix as it is a common notation abuse in machine learning. Although 

we use symbolic notation, we actually use numerical gradient values.

Section 4. Enumeration-based Bayesian optimization in compositional design

Figure S1. Illustration of the standard workflow of enumeration-based Bayesian Optimization 
for materials design.



Table S3 Pseudo code of enumeration-based Bayesian Optimization for 
materials composition design
[1] Given composition-property data Dcomp and design space Dspace. A composition c is 

transformed into materials features by combining elemental properties and mole fractions 
through a mathematical formula ε(c), a surrogate model g(ε(c)) is built, and acquisition 
function  values are calculated.𝛼(𝑔(𝜀(𝑐)))

[2] for t ← 1, …, T, do  // For all outer experimental iterations
[3] Calculate materials features for Dcomp using ε(c).
[4] Train a GP model using calculated materials features as input and alloy property 

values as output.
[5] Build an acquisition model facq(·) using the trained GP. Input into the GP should be 

calculated materials features.
[6] Dspace ← Dspace - cexperimented

[7] c* ← 𝑎𝑟𝑔𝑚𝑎𝑥c∈Dspace facq(felem(c))
[8] Do experiment on c* and add experimental results into Dcomp

[9] Return maximum property value in Dcomp as best so far property.

Figure S1 presents a flowchart of the enumeration-based Bayesian Optimization (BO) framework 
for materials design. The process iteratively refines a surrogate model through statistical inference 
of experimental data, enabling predictions with uncertainty estimates across the search space. The 
acquisition function typically balances exploration-exploitation trade-offs by ranking candidates 
based on both predicted performance and prediction uncertainty. Table S3 details the algorithmic 
implementation, where a GPR model serves as the surrogate, mapping materials features ε(c) into 
model predictions. The algorithm exhaustively explores the design space by selecting compositions 
that maximize the AF value, with experimental results continuously updating the surrogate model 
to drive this iterative design process.

It is emphasized that the enumeration-based compositional design process still dominates in 
many research studies on multicomponent alloy design.



Figure S2. Pair plots showing the distribution of element compositions for SMA alloys explored 
during optimization. Gray points represent training data, red points show compositions selected 
by the enumeration method, and blue points indicate compositions chosen by the feature gradient 
method. Diagonal plots display the kernel density estimation of compositional distributions for 
each element. This visualization demonstrates that the gradient optimization method (blue) 
explores a broader range of compositional space with more uniform distributions (evidenced by 
the flatter blue density curves), while the enumeration method (red) tends to produce more peaked 
distributions focused on limited compositional regions, consistent with the entropy analysis in 
Figure 5.

To further validate our observations regarding state entropy and compositional diversity, we 
examined the pairwise distributions of elemental compositions in the SMA system with 4 
components (Figure S2). The pair plots reveal distinct exploration patterns between the two 
optimization strategies. The enumeration method (red points) exhibits more concentrated sampling 
in specific regions of the compositional space, with narrower distributions visible in the diagonal 
density plots. In contrast, the feature gradient method (blue points) demonstrates wider and more 
uniform exploration across the available compositional dimensions, particularly evident in the Ti-
Ni, Ti-Cu, and Ni-Hf distributions. This compositional diversity directly corresponds to the higher 
state entropy values observed for the gradient optimization method in Figure 5.

Section 5. Examining materials features for compositional design

Table S4 Pseudo code for evaluating the effectiveness of materials features 



versus raw compositions in predicting material properties. The algorithm 
compares the predictive performance of both input types through 10-fold cross-
validation experiments and T-test analysis
[1] Given composition-property data Dcomp, mathematical formulas to calculate materials 

features.
[2] Prepare metric buffers, Bcomposition and Bfeature.
[3] for t ← 1, …, T, do  // For one comparison experiment.
[4] Randomly choose 100 composition-property data (Dtemp) from Dcomp.
[5] Conduct 10-fold CV using compositions as input and alloy property values as output. 

The resulting MAPE value is mc.
[6] Push mc into Bcomposition.
[7] Find mathematical formula(s) ε(c) that minimizes 10-fold CV MAPE, using 

calculated materials feature as input. The resulting MAPE value is mf.
[8] Push mf into Bfeature.
[9] Conduct T-test on Bcomposition and Bfeature.  // Statistical analysis. 

Table S4 presents the algorithmic implementation for verifying the effectiveness of materials 
features versus raw compositions as model input in predicting material properties. The comparison 
procedure consists of T independent experiments, each processing 100 randomly sampled 
composition-property pairs. For each experiment, two parallel evaluations are conducted: one using 
raw compositions as input (Lines 4-6) and another using calculated materials features (Lines 4, 7-8). 
Both evaluations employ 10-fold cross-validation with standard normalization to ensure fair 
comparison, yielding mean absolute percentage error (MAPE) values as performance metrics. These 
MAPE values are collected in separate buffers (Bcomposition and Bfeature) for subsequent statistical 
analysis using paired t-tests (Line 9). This evaluation procedure enables quantitative assessment of 
the predictive advantages offered by materials features over raw compositions. The statistical 
significance of performance differences (p < 0.01, indicating strong statistical evidence against the 
null hypothesis and suggesting that the observed differences are highly unlikely under the 
assumption of no true effect) across multiple independent trials provides evidence for using 
materials features as surrogate model inputs, despite their additional computational cost in the 
Bayesian Optimization process.



Figure S3. Comparative analysis of predictive performance between models using raw 
compositions (blue) and material features (red) as inputs for predicting martensitic 
transformation temperature (SMAs), Vickers hardness (Ti alloys), and yield strength 
(HEAs). Box plots show the distribution of mean absolute error (MAE) values from 10-fold 
cross-validation across 64 comparative experiments for each dataset. Statistical significance 
of the performance differences was confirmed through paired t-tests (pt-test < 0.01, meaning 
that there is less than 1% probability that the differences were due to chance).

We also evaluated model performance using mean absolute error (MAE) as shown in Figure S3. 
The calculation procedure followed the same experimental design described in Table S4, with the 
only modification being lines 5 and 7, where MAPE was replaced with MAE. As shown in Figure 
S3, models using material features consistently achieved lower MAE values compared to those 
using raw compositions across all three material systems (SMAs, Ti alloys, and HEAs). The 
statistical significance of these performance differences was confirmed through paired t-tests (p < 
0.01), reinforcing the conclusion that materials features provide better predictive capabilities. It is 
important to note that when interpreting Figure S3, each subplot should be considered 
independently, and direct comparisons should not be made across the three subplots due to the 
different scales and units of the properties being measured.
 



Table S5 Elemental properties utilized for material 
features calculation

Abbreviation Description

AN Atomic Number

QN Quantum Number

C Column in the Periodic Table

RAM Relative Atomic Mass

VA Atom Volume

R Atom Radius

AEN Atomic Environment Number

VEC Valence Electron Concentration

XMB Electronegativity (Martynov&Batsanov)

XP Electronegativity Mismatch (Pauling)

XA Electronegativity Mismatch (Allen)

G Shear Modulus

E Elastic Modulus

FIE First Ionization Energy

SIE Second Ionization Energy

TIE Third Ionization Energy

CPM Chemical Potential (Miedema)

WF Work Function

NCE Effective Nuclear Charge (Slater)

CNE Effective Charge Nuclear (Clementi)

MT Melting Point

TB Boiling Temperature

EV Vaporization Enthalpy

EM Melting Enthalpy

EA Atomization Enthalpy

CE Cohesive Energy

MC Compression Modulus

DVE Valence Electron Distance (Schubert)

DCE Core Electron Distance (Schubert)

D Density

The considered features include simple metrics such as atomic number and quantum number, 
physical properties like atomic radius and volume, electronic properties such as valence electron 
concentration and electronegativity, and thermodynamic properties including various enthalpy 
measures and phase transition temperatures [7, 12]. These elemental properties serve as the 
foundation for calculating material features that potentially capture informative relationships of 
multi-component systems. Table S5 lists the comprehensive set of elemental properties used in our 
feature engineering process. These properties span from fundamental atomic characteristics to 
complex physicochemical attributes, providing a diverse basis for materials feature calculation. 
These properties are selected based on their potential relevance to material behavior and 
performance prediction.



The feature transformation based on elemental properties and alloy compositions can be understood 
as a manual feature extraction process that enhances information sharing among elements.

Section 6. The SMA, Ti alloys and HEA test environments.

Figure S4. Box plots of figure of merit (FOM) values across the three material systems in our 
datasets.

The datasets used in this study comprise experimental composition-property data for three distinct 
material systems: shape memory alloys (SMAs), titanium alloys (Ti Alloys), and high-entropy 
alloys (HEAs). These datasets, which are available within our GitHub repository 
(https://github.com/wsxyh107165243/FeatureGradientBO), present distinct FOM distributions 
reflecting the different optimization objectives for each material system, as shown in Figure S4.



Figure S5. Pearson correlation matrices showing relationships between material composition, 
properties, and FOM for each test environment: (a) SMAs, showing correlations between ΔH, 
Mp, and Ap, individual elements, and FOM; (b) Titanium alloys, displaying correlations between 
yield strength (YS), ultimate tensile strength (UTS), Vickers hardness (VH), elemental 
compositions, and FOM; (c) HEAs, illustrating correlations between YS, UTS, elongation (El), 
elemental compositions, and FOM. Red indicates positive correlation, blue indicates negative 
correlation, with color intensity representing correlation strength.

To investigate the underlying relationships between elemental compositions and material properties, 
we conducted Pearson correlation analysis on the training datasets used for our three test 
environments (Figure S5). These correlation matrices reveal composition-property relationships 
within each material system. For SMAs, Hf shows strong positive correlation (0.62) with FOM, 
while Ti exhibits strong negative correlation (-0.66). In Ti alloys, Mo demonstrates the strongest 
correlation with FOM (0.36). For HEAs, Co appears as the most influential element (0.41). It 
is important to note that these Pearson correlation coefficients only capture linear relationships 
between variables and may not fully represent more complex, non-linear interactions present in the 
materials systems.

Our neural networks consist of a convolutional section followed by fully connected layers. The input 
layer processes alloy compositions (Nelem elements) and their corresponding elemental features (30 
features per element). The convolutional section comprises two Conv2D layers with kernel size 
1×31, each followed by batch normalization and ELU activation (α = 0.2). A residual connection is 
implemented between the input and the output of the convolutional section to facilitate gradient 
flow. The flattened output is concatenated with three processing condition parameters before 



entering the fully connected section, which consists of a hidden layer with 128 neurons and an output 
layer. Dropout (p=0.5) is applied after the hidden layer to prevent overfitting.

These networks were trained using the Adam optimizer with a learning rate of 5×10⁻⁴ and batch size 
of 16. The mean squared error (MSE) was used as the loss function. All input features were 
standardized using the standard scaler from scikit-learn [11]. The dataset was randomly split into 
training (70%), validation (15%), and test (15%) sets. The model was trained for 1000 epochs with 
early stopping monitored on the validation set to prevent overfitting. Model performance was 
evaluated using the coefficient of determination (R²) score.



Table S6 Composition constraints for SMAs
Element Lower limit (at. ratio) Upper limit (at. ratio) Step (at. ratio)

Ti 0.2 0.55

Ni 0.2 0.55

Cu 0 0.2

Hf 0 0.2

Co 0 0.1

Zr 0 0.2

Fe 0 0.1

Pd 0 0.33

Ta 0 0.05

Nb 0 0.2

V 0 0.1

0.001

Table S7 Composition constraints for Ti Alloys
Element Lower limit (at. ratio) Upper limit (at. ratio) Step (at. ratio)

Ti 0.6 0.8

Al 0 0.1

Zr 0 0.2

Mo 0 0.2

V 0 0.15

Ta 0 0.2

Nb 0 0.2

Cr 0 0.1

Mn 0 0.1

Fe 0 0.1

Sn 0 0.1

0.001

Table S8 Composition constraints for HEAs
Element Lower limit (at. ratio) Upper limit (at. ratio) Step (at. ratio)

C 0 0.06

Al 0 0.16

V 0 0.33

Cr 0 0.4

Mn 0 0.5

Fe 0 0.6

Co 0 0.5

Ni 0 0.6

Cu 0 0.36

Mo 0 0.1

0.001

Table S6-S8 present the considered elements and corresponding compositional constraints for 
SMAs, Ti Alloys HEAs test environments. For determining the number of all possible compositions 
in the design spaces, we implemented a dynamic programming approach, which is available in our 



open-source code repository.

Section 7. Brief discussion of gradient ascent as inner loop argmax

We note that for EI, one common associated issue is that the AF value gradually approximates 0 as 
the experimental iterations proceed. This is challenging for gradient-based optimization methods 
(including SLSQP), as the "gradient values" will almost vanish in these cases. However, researchers 
have already come up with using logEI [13] instead of the original EI, as EI approaches 0, logEI → 
-∞, mitigating the vanishing EI value problem. For our experiments here, we only use the original 
EI function values for the comparison results provided in the main text. This will cause an issue for 
gradient-based EI maximization and we expect better results if we implement logEI for our methods.

We examined two current, still actively maintained BO implementations, BayesianOptimization 
[14] and BoTorch. While BayesianOptimization relies on gradient values from finite difference 
calculations, BoTorch defaults to using automatic differentiation based on PyTorch for gradient 
computation. However, neither provides gradient calculations from GPR inputs back to composition 
inputs, which motivated our work.

Section 8. Brief clarification of design choice considerations

The number of initial compositional guesses, 20×Nelem, was empirically determined from our large 
scale simulated experiments, showing good performance across different systems while maintaining 
reasonable resource consumption. It is worth noting that in both BoTorch and BayesianOptimization 
packages, this parameter is typically set as a fixed value (e.g., around 10) and does not vary with 
x/composition dimensionality. We believe our choice of this parameter setting is sufficiently 
conservative to achieve (at least) comparable inner loop results with BoTorch (considering multiple 
parallel runs).

As for random sampling strategies, while this approach has been validated by both BoTorch and 
BayesianOptimization packages, there remains potential for improvement. Specifically, strategies 
for generating more diverse initial samples as start points to initiate gradient ascent would be 
interesting. However, this exploration remains beyond the current scope of this work.
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