
Supplemental Information for

Leveraging Feature Gradient for Efficient Acquisition

Function Maximization in Material Composition Design
Yuehui Xian, Yunfan Wang, Pengfei Dang, Xinquan Wan, Yumei Zhou*, Xiangdong
Ding*, Jun Sun, Dezhen Xue*

State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University,
Xi’an 710049, China

This PDF file includes 8 sections with Figures S1 to S5 and Tables S1 to S8.

Supplementary Information (SI) for Digital Discovery.
This journal is © The Royal Society of Chemistry 2025

Section 1. Clarification of the compositional design space

In multi-component alloy composition design, discrete step sizes (e.g., 1%, 0.2%, 0.1%) are
typically used to adjust the compositional values of different elements, subject to the constraint that
the sum of all components equals 100%. All possible composition points satisfying both "non-
negativity" and "normalization" (sum to 100%) constraints form a simplex space. For an n-
component system, the composition space constitutes an (n-1)-dimensional simplex. When
additional constraints are applied to this simplex space based on domain knowledge, such as
requiring certain elements to have compositions greater than 10%, the feasible solutions form a
subset within a simplex space, with all valid alloy compositions lying either within, or on the
vertices/edges of this polytope.

To illustrate the rapid growth of the number of possible compositions with respect to the number of
components, let us consider a simplified scenario where: a) Each element's composition uses a step
size of 1%; b) Compositions range within [0, 100%]. Under these conditions, each component can
take discrete values of 0%, 1%, 2%, ..., 100%. The problem of finding all possible discrete
composition points can be transformed into a combinatorial mathematics problem: finding the
number of non-negative integer solutions to the equation:
𝑥1 + 𝑥2 + … + 𝑥𝑛 = 100% ,

where represents the composition value of the n-th element. This can be solved using the "stars 𝑥𝑛

and bars" theorem, yielding:

𝐶 𝑛 ‒ 1
100 + 𝑛 ‒ 1 =

(𝑛 + 99)!
100! ∙ (𝑛 ‒ 1)!

 ,

(𝑛 + 99)!
(𝑛 ‒ 1)!

= 𝑛 ∙ (𝑛 + 1) ∙ ⋯ ∙ (𝑛 + 99) ≈ 𝑛100, 𝑤ℎ𝑒𝑛 𝑛 → + ∞ .

In practical multi-component alloy design, since elements typically have non-zero lower bounds
(e.g., based on domain knowledge) for their compositions, the feasible compositions form a convex
polytope subset. If with smaller compositional step sizes in optimization, this will lead to a rapid
polynomial growth with respect to the number of possible compositions. Therefore, exhaustively
enumerating all possible compositions (essentially a brute force approach) becomes
computationally prohibitive for high-dimensional discrete compositional spaces. While various
optimization techniques exist for continuous problems, the discrete nature and constraints of alloy
composition design present unique challenges. For these specific challenges, implementing
gradient-based methods for composition design offers a promising direction within the inner loop
of BO to identify promising compositions. This rapid polynomial growth demonstrates why efficient
optimization strategies are crucial for exploring high-dimensional compositional spaces.

It is worth noting that the choice of 0.1% as the compositional step size aligns with practices in
materials design literatures [1-4]. This precision is particularly justified in cases like shape memory
alloys (SMAs), where minor variations (0.1%) in the composition of key elements (e.g., Ti, Ni) can
significantly affect phase transformation behaviors [5]. In fact, we do not always have a priori
knowledge on how sensitive material properties are to compositional changes across different
concentration ranges, making this fine-grained exploration necessary, although such precision may
not be required for all cases.

Section 2. Formal formulation of the inner loop

Within the BO framework, the experimental optimization of materials properties involves solving
the following inner optimization [6] problem:
𝑎𝑟𝑔𝑚𝑎𝑥𝑐 ∈ 𝐶𝛼(𝑐) ,

where α(·) represents the acquisition function, which here is calculated based on the mean and
uncertainty predictions from the surrogate model, but could be purely focused on exploitation or
exploration as well. The composition vector c needs to satisfy the following constraints:

𝐶 = {〈𝑥1,𝑥2,…,𝑥𝑛 〉 | 𝑥𝑖 ∈ 𝐷𝑖,
𝑛

∑
1

𝑥𝑖 = 100%} .

Here, represents the alloy composition vector, where Di denotes the set of possible 〈𝑥1,𝑥2,…,𝑥𝑛 〉

discrete compositional values for the i-th element. These formulations capture both the optimization
objective and the constraints in alloy design: each element's composition must fall within its allowed
range , and the sum of all compositional values must equal 100% (normalization constraint).𝑥𝑖 ∈ 𝐷𝑖

The acquisition function α(·) plays a crucial role in balancing exploration and exploitation during
the optimization process. It utilizes both the predicted mean and the associated uncertainty from the
surrogate model to guide the search for optimal compositions. This inner loop optimization problem,
while mathematically well-defined, presents significant computational challenges due to the high-
dimensional compositional space and the multi-modal landscape of the acquisition function, which
is particularly the case we consider in this work.

Section 3. Formulations of GPR, α(·), feature transformations and the numerical
estimation of AF gradients with respect to c

Gaussian Process Regression (GPR)
Given a set of training data X with corresponding target values y under noise-free conditions, GPR
enables us to predict both the mean (μ) and standard deviation (σ) at any test point x. We denote the
GPR as g(·). The mathematical formulation is as follows:
𝜇 = 𝐾(𝑋, 𝑥)𝑇𝐾(𝑋, 𝑋) ‒ 1𝑦 ,
𝜎2 = 𝐾(𝑥,𝑥) ‒ 𝐾(𝑋,𝑥)𝑇𝐾(𝑋, 𝑋) ‒ 1𝐾(𝑋, 𝑥) ,
where K(X, x) represents the kernel matrix between training data X and the test point x, K(X, X)
represents the kernel matrix among training points and K(x, x) represents the self-covariance at the
test point x.

For measuring the similarity between compositional points, we employ the Matérn 5/2 kernel
function:

𝑘(𝑥, 𝑥') = 𝜎𝑓
2(1 +

5𝑟
𝑙

+
5𝑟2

3𝑙2)exp (‒
5𝑟
𝑙) ,

where r = ||x - x'|| is the Euclidean distance between input points x and x', is the signal variance 𝜎𝑓
2

and l is the length scale parameter. The training process of GPR involves optimizing the kernel
hyperparameters (e.g., and l) by maximizing the marginal likelihood, ensuring the model best 𝜎𝑓

explains the observed data. This kernel choice ensures differentiability with respect to the
input x except at the point where x equals x′, which is crucial for our gradient-based optimization
approach.

Acquisition Functions
For the acquisition functions, we consider three commonly used ones: Expected Improvement (EI),
Probability of Improvement (POI), and Upper Confidence Bound (UCB), which are defined as
follows:

𝑍 =
(𝜇 ‒ 𝜇 +)

𝜎
 ,

𝛼𝐸𝐼 = {(𝜇 ‒ 𝜇 +)Φ(𝑍) + 𝜎𝜙(𝑍), 𝑖𝑓𝜎 > 0
0, 𝑖𝑓 𝜎 = 0 �,

𝛼𝑃𝑂𝐼 = {Φ(𝑍), 𝑖𝑓 𝜎 > 0
0, 𝑖𝑓 𝜎 = 0 �,

𝛼𝑈𝐶𝐵 = 𝜇 + 𝜅𝜎 ,

where is the best experimental observation within X, is the normal cumulative distribution 𝜇 + Φ(·)
function, is the normal probability density function and κ is a parameter for tuning the degree 𝜙(·)

of exploration.
These considered acquisition functions maintain differentiability with respect to input, exhibiting
piecewise differentiability except at points where σ(·) = 0. However, this piecewise differentiability
does not pose significant challenges for current state numerical optimization methods.

Feature Transformations

Table S1 Mathematical formulas for transforming elemental properties into material features

�̅� =
𝑛

∑
𝑖 = 1

𝑐𝑖 ∙ 𝐸𝑖

𝛿𝐸 =
𝑛

∑
𝑖 = 1

𝑐𝑖 ∙ (1 ‒ 𝐸𝑖 �̅�)

𝑀𝐴𝑋.𝐸 = max (𝐸𝑖), 𝑓𝑜𝑟 𝑐𝑖 ≠ 0

𝑀𝐼𝑁.𝐸 = min (𝐸𝑖), 𝑓𝑜𝑟 𝑐𝑖 ≠ 0

𝑅𝑎𝑛𝑔𝑒.𝐸 = 𝑀𝐴𝑋.𝐸 ‒ 𝑀𝐼𝑁.𝐸

𝑀𝐴𝑋𝐶.𝐸 = 𝑐𝑗 ∙ 𝐸𝑗, 𝑤ℎ𝑒𝑟𝑒 𝑐𝑗 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑐𝑖, 𝑐𝑖 ≠ 0𝐸𝑖

𝑀𝐼𝑁𝐶.𝐸 = 𝑐𝑗 ∙ 𝐸𝑗, 𝑤ℎ𝑒𝑟𝑒 𝑐𝑗 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑐𝑖, 𝑐𝑖 ≠ 0𝐸𝑖

𝑅𝑎𝑛𝑔𝑒𝐶.𝐸 = 𝑐𝑗 ∙ 𝐸𝑗 ‒ 𝑐𝑘 ∙ 𝐸𝑘, 𝑤ℎ𝑒𝑟𝑒 𝑐𝑗 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑐𝑖, 𝑐𝑖 ≠ 0𝐸𝑖 𝑎𝑛𝑑 𝑐𝑘 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑐𝑖, 𝑐𝑖 ≠ 0𝐸𝑖

Table S1 presents the mathematical formulas used to transform elemental properties into material
features [7]. Here, ci represents the molar fraction of element i, Ei denotes the corresponding
elemental property value, and n is the total number of elements in the composition. These
transformations enable the conversion of discrete elemental properties into continuous material
features that can effectively capture composition-property relationships. To enable gradient-based
optimization, we implemented differentiable versions of the mathematical formulas shown in Table
S1. A key challenge was to make the argmax/argmin operations differentiable. The traditional
argmax operation returns an index of the maximum value, which is non-differentiable. We
addressed this by implementing a "soft" version that produces a probability distribution over indices
using the softmax function:
𝑤 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝜏 ∙ 𝑥) ,
where τ is a temperature parameter (set to 1×10⁶ in our implementation) that controls the sharpness
of the approximation, and w represents the weight distribution across all positions. As τ approaches
infinity, the weights w approach a one-hot vector with 1 at the position of the maximum value,
effectively approximating the behavior of argmax while maintaining differentiability. For numerical
stability, we also incorporated a small position-dependent epsilon sequence (decreasing from 1×10⁻⁴
to 0) to break potential ties in the input values.

The soft argmin operation is implemented analogously using softmax(-x). These differentiable
operations are particularly crucial for MAXC.E, MINC.E, and RangeC.E calculations, where the
gradient information needs to be properly propagated through the selection of maximum and
minimum values. Additionally, we applied a sigmoid function with the same temperature parameter
to smooth the compositional masks used for filtering zero-concentration elements:
𝑚𝑎𝑠𝑘 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝜏 ∙ (𝑐 ‒ 𝜀)) ,
where c represents the element-wise compositions and ε is a small threshold (1×10⁻⁵). This
comprehensive differentiable implementation ensures stable gradient flow through the entire
optimization process while closely approximating the original mathematical formulations.

Numerical Gradient Estimation of Acquisition Functions

We only provide a glimpse here. The foundation of this numerical gradient estimation approach lies
in the fundamental properties of GPR. GPR can be understood as a weighted sum of basis functions
in an infinite-dimensional function space, which is guaranteed by Mercer's theorem. To numerically
estimate the gradient value of acquisition functions, we first utilize the following formulation [8]:

𝛼(𝑥;Θ,𝐷) = 𝐸[𝑢(𝑔(𝑥), Θ)|𝐷]≅�̂�𝑁𝑓
(𝑥;Θ,𝐷) =

1
𝑁𝑓

𝑁𝑓

∑
𝑖 = 1

𝑢(𝜉 𝑖
𝐷(𝑥),Θ) ,

where represents function samples drawn from the posterior distribution , D represents 𝜉 𝑖
𝐷(𝑥) 𝑔𝐷(·)

the training dataset (i.e., the experimented materials), Θ are parameters independent of x (e.g., κ in
UCB) and u(·) is a utility function that defines the acquisition function α(·). In the case of EI, the
u(·) refers to .𝑚𝑎𝑥(𝑔(𝑥) ‒ 𝜇 + , 0)

The gradient estimation process follows these steps:
a) Starting with the basic form of gradient estimation:

∇𝑥�̂�𝑁𝑓
(𝑥;Θ,𝐷) = ∇𝑥(

1
𝑁𝑓

𝑁𝑓

∑
𝑖 = 1

𝑢(𝜉 𝑖
𝐷(𝑥),Θ)) .

b) Applying the chain rule yields:

∇𝑥�̂�𝑁𝑓
(𝑥;Θ,𝐷) =

1
𝑁𝑓

𝑁𝑓

∑
𝑖 = 1

∇𝜉𝑢(𝜉 𝑖
𝐷(𝑥),Θ) ∙ ∇𝑥𝜉 𝑖

𝐷(𝑥) .

c) By introducing as the auxiliary variable related to the posterior distribution (i.e., the ℎ𝐷(𝑥, 𝜖)

reparameterization trick), we can express:
∇𝑥𝑢(𝜉 𝑖

𝐷(𝑥),Θ) = ∇𝜉𝑢(𝜉 𝑖
𝐷(𝑥),Θ) ∙ ∇𝑥ℎ𝐷(𝑥, 𝜖) .

This ensures that is transformed into a differentiable deterministic function , 𝜉~𝑔𝐷(·) 𝜉 = ℎ𝐷(𝑥, 𝜖)

and stochasticity is only related with , not x.𝜖

d) The complete gradient expression becomes:

∇𝑥�̂�𝑁𝑓
(𝑥;Θ,𝐷) =

1
𝑁𝑓

𝑁𝑓

∑
𝑖 = 1

∇𝜉𝑢(𝜉 𝑖
𝐷(𝑥),Θ) ∙ ∇𝑥ℎ𝐷(𝑥, 𝜖) .

This derivation demonstrates how we can compute numerical gradients through the
reparameterization of posterior samples, which is particularly effective when implemented within
GPR using (function) samples drawn from a posterior distribution.

For subsequent use in gradient ascent/descent, we can leverage this gradient information to obtain

x*, specifically conditioned on D, facilitated by N drawn samples: 𝜉 𝑖
𝐷(𝑥)

.𝑥 ∗
𝑁 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑥 = 𝑋�̂�𝑁(𝑥;Θ, 𝐷)

For the computational pipeline from materials features to GPR predictions and then to AF values,
we utilized BoTorch [8], which is built on GPyTorch [9] and leveraged PyTorch [10] for forward
computational graph and backward gradient propagation. For detailed implementation of this part,
interested readers may refer to Balandat et. al. [8].

For the transformation from composition to materials features, we self-implemented this part and
bridged it with the aforementioned framework, also leveraging PyTorch, to achieve stable gradient
flow from AF back to compositions, i.e., the numerical gradient vector with respect to each
composition variable. When utilizing this gradient vector in SLSQP optimization [11], special
consideration must be given to constraints. In fact, our choice of SLSQP was partially motivated by
its ability to handle linear constraints on inputs effectively.

We now summarize the whole computational pipeline as Table S2:

Table S2. Overview of the computational pipeline and its gradient computation. The pipeline is
decomposed into three main transformations: from compositions to material features, surrogate
predictions and acquisition function values. For each transformation, we specify the input-output
relationship, function notation, based on which we implemented, and the corresponding
gradient/Jacobian computation.

Function Name Input → Output
Function

Notation
Implementation

Gradient Vector /

Jacobian Matrix†

Feature Transformation

Function

composition → material

features
ε(·) self-implemented ∇𝑐𝜀

Gaussian Process

Regression

material features →

surrogate predictions
g(·) ∇𝜀𝑔

Acquisition Function
surrogate predictions →

acquisition function value
α(·)

BoTorch

∇𝑔𝛼

Note: † We use ∇ for both gradient vector and Jacobian matrix as it is a common notation abuse in machine learning. Although

we use symbolic notation, we actually use numerical gradient values.

Section 4. Enumeration-based Bayesian optimization in compositional design

Figure S1. Illustration of the standard workflow of enumeration-based Bayesian Optimization
for materials design.

Table S3 Pseudo code of enumeration-based Bayesian Optimization for
materials composition design
[1] Given composition-property data Dcomp and design space Dspace. A composition c is

transformed into materials features by combining elemental properties and mole fractions
through a mathematical formula ε(c), a surrogate model g(ε(c)) is built, and acquisition
function values are calculated.𝛼(𝑔(𝜀(𝑐)))

[2] for t ← 1, …, T, do // For all outer experimental iterations
[3] Calculate materials features for Dcomp using ε(c).
[4] Train a GP model using calculated materials features as input and alloy property

values as output.
[5] Build an acquisition model facq(·) using the trained GP. Input into the GP should be

calculated materials features.
[6] Dspace ← Dspace - cexperimented

[7] c* ← 𝑎𝑟𝑔𝑚𝑎𝑥c∈Dspace facq(felem(c))
[8] Do experiment on c* and add experimental results into Dcomp

[9] Return maximum property value in Dcomp as best so far property.

Figure S1 presents a flowchart of the enumeration-based Bayesian Optimization (BO) framework
for materials design. The process iteratively refines a surrogate model through statistical inference
of experimental data, enabling predictions with uncertainty estimates across the search space. The
acquisition function typically balances exploration-exploitation trade-offs by ranking candidates
based on both predicted performance and prediction uncertainty. Table S3 details the algorithmic
implementation, where a GPR model serves as the surrogate, mapping materials features ε(c) into
model predictions. The algorithm exhaustively explores the design space by selecting compositions
that maximize the AF value, with experimental results continuously updating the surrogate model
to drive this iterative design process.

It is emphasized that the enumeration-based compositional design process still dominates in
many research studies on multicomponent alloy design.

Figure S2. Pair plots showing the distribution of element compositions for SMA alloys explored
during optimization. Gray points represent training data, red points show compositions selected
by the enumeration method, and blue points indicate compositions chosen by the feature gradient
method. Diagonal plots display the kernel density estimation of compositional distributions for
each element. This visualization demonstrates that the gradient optimization method (blue)
explores a broader range of compositional space with more uniform distributions (evidenced by
the flatter blue density curves), while the enumeration method (red) tends to produce more peaked
distributions focused on limited compositional regions, consistent with the entropy analysis in
Figure 5.

To further validate our observations regarding state entropy and compositional diversity, we
examined the pairwise distributions of elemental compositions in the SMA system with 4
components (Figure S2). The pair plots reveal distinct exploration patterns between the two
optimization strategies. The enumeration method (red points) exhibits more concentrated sampling
in specific regions of the compositional space, with narrower distributions visible in the diagonal
density plots. In contrast, the feature gradient method (blue points) demonstrates wider and more
uniform exploration across the available compositional dimensions, particularly evident in the Ti-
Ni, Ti-Cu, and Ni-Hf distributions. This compositional diversity directly corresponds to the higher
state entropy values observed for the gradient optimization method in Figure 5.

Section 5. Examining materials features for compositional design

Table S4 Pseudo code for evaluating the effectiveness of materials features

versus raw compositions in predicting material properties. The algorithm
compares the predictive performance of both input types through 10-fold cross-
validation experiments and T-test analysis
[1] Given composition-property data Dcomp, mathematical formulas to calculate materials

features.
[2] Prepare metric buffers, Bcomposition and Bfeature.
[3] for t ← 1, …, T, do // For one comparison experiment.
[4] Randomly choose 100 composition-property data (Dtemp) from Dcomp.
[5] Conduct 10-fold CV using compositions as input and alloy property values as output.

The resulting MAPE value is mc.
[6] Push mc into Bcomposition.
[7] Find mathematical formula(s) ε(c) that minimizes 10-fold CV MAPE, using

calculated materials feature as input. The resulting MAPE value is mf.
[8] Push mf into Bfeature.
[9] Conduct T-test on Bcomposition and Bfeature. // Statistical analysis.

Table S4 presents the algorithmic implementation for verifying the effectiveness of materials
features versus raw compositions as model input in predicting material properties. The comparison
procedure consists of T independent experiments, each processing 100 randomly sampled
composition-property pairs. For each experiment, two parallel evaluations are conducted: one using
raw compositions as input (Lines 4-6) and another using calculated materials features (Lines 4, 7-8).
Both evaluations employ 10-fold cross-validation with standard normalization to ensure fair
comparison, yielding mean absolute percentage error (MAPE) values as performance metrics. These
MAPE values are collected in separate buffers (Bcomposition and Bfeature) for subsequent statistical
analysis using paired t-tests (Line 9). This evaluation procedure enables quantitative assessment of
the predictive advantages offered by materials features over raw compositions. The statistical
significance of performance differences (p < 0.01, indicating strong statistical evidence against the
null hypothesis and suggesting that the observed differences are highly unlikely under the
assumption of no true effect) across multiple independent trials provides evidence for using
materials features as surrogate model inputs, despite their additional computational cost in the
Bayesian Optimization process.

Figure S3. Comparative analysis of predictive performance between models using raw
compositions (blue) and material features (red) as inputs for predicting martensitic
transformation temperature (SMAs), Vickers hardness (Ti alloys), and yield strength
(HEAs). Box plots show the distribution of mean absolute error (MAE) values from 10-fold
cross-validation across 64 comparative experiments for each dataset. Statistical significance
of the performance differences was confirmed through paired t-tests (pt-test < 0.01, meaning
that there is less than 1% probability that the differences were due to chance).

We also evaluated model performance using mean absolute error (MAE) as shown in Figure S3.
The calculation procedure followed the same experimental design described in Table S4, with the
only modification being lines 5 and 7, where MAPE was replaced with MAE. As shown in Figure
S3, models using material features consistently achieved lower MAE values compared to those
using raw compositions across all three material systems (SMAs, Ti alloys, and HEAs). The
statistical significance of these performance differences was confirmed through paired t-tests (p <
0.01), reinforcing the conclusion that materials features provide better predictive capabilities. It is
important to note that when interpreting Figure S3, each subplot should be considered
independently, and direct comparisons should not be made across the three subplots due to the
different scales and units of the properties being measured.

Table S5 Elemental properties utilized for material
features calculation

Abbreviation Description

AN Atomic Number

QN Quantum Number

C Column in the Periodic Table

RAM Relative Atomic Mass

VA Atom Volume

R Atom Radius

AEN Atomic Environment Number

VEC Valence Electron Concentration

XMB Electronegativity (Martynov&Batsanov)

XP Electronegativity Mismatch (Pauling)

XA Electronegativity Mismatch (Allen)

G Shear Modulus

E Elastic Modulus

FIE First Ionization Energy

SIE Second Ionization Energy

TIE Third Ionization Energy

CPM Chemical Potential (Miedema)

WF Work Function

NCE Effective Nuclear Charge (Slater)

CNE Effective Charge Nuclear (Clementi)

MT Melting Point

TB Boiling Temperature

EV Vaporization Enthalpy

EM Melting Enthalpy

EA Atomization Enthalpy

CE Cohesive Energy

MC Compression Modulus

DVE Valence Electron Distance (Schubert)

DCE Core Electron Distance (Schubert)

D Density

The considered features include simple metrics such as atomic number and quantum number,
physical properties like atomic radius and volume, electronic properties such as valence electron
concentration and electronegativity, and thermodynamic properties including various enthalpy
measures and phase transition temperatures [7, 12]. These elemental properties serve as the
foundation for calculating material features that potentially capture informative relationships of
multi-component systems. Table S5 lists the comprehensive set of elemental properties used in our
feature engineering process. These properties span from fundamental atomic characteristics to
complex physicochemical attributes, providing a diverse basis for materials feature calculation.
These properties are selected based on their potential relevance to material behavior and
performance prediction.

The feature transformation based on elemental properties and alloy compositions can be understood
as a manual feature extraction process that enhances information sharing among elements.

Section 6. The SMA, Ti alloys and HEA test environments.

Figure S4. Box plots of figure of merit (FOM) values across the three material systems in our
datasets.

The datasets used in this study comprise experimental composition-property data for three distinct
material systems: shape memory alloys (SMAs), titanium alloys (Ti Alloys), and high-entropy
alloys (HEAs). These datasets, which are available within our GitHub repository
(https://github.com/wsxyh107165243/FeatureGradientBO), present distinct FOM distributions
reflecting the different optimization objectives for each material system, as shown in Figure S4.

Figure S5. Pearson correlation matrices showing relationships between material composition,
properties, and FOM for each test environment: (a) SMAs, showing correlations between ΔH,
Mp, and Ap, individual elements, and FOM; (b) Titanium alloys, displaying correlations between
yield strength (YS), ultimate tensile strength (UTS), Vickers hardness (VH), elemental
compositions, and FOM; (c) HEAs, illustrating correlations between YS, UTS, elongation (El),
elemental compositions, and FOM. Red indicates positive correlation, blue indicates negative
correlation, with color intensity representing correlation strength.

To investigate the underlying relationships between elemental compositions and material properties,
we conducted Pearson correlation analysis on the training datasets used for our three test
environments (Figure S5). These correlation matrices reveal composition-property relationships
within each material system. For SMAs, Hf shows strong positive correlation (0.62) with FOM,
while Ti exhibits strong negative correlation (-0.66). In Ti alloys, Mo demonstrates the strongest
correlation with FOM (0.36). For HEAs, Co appears as the most influential element (0.41). It
is important to note that these Pearson correlation coefficients only capture linear relationships
between variables and may not fully represent more complex, non-linear interactions present in the
materials systems.

Our neural networks consist of a convolutional section followed by fully connected layers. The input
layer processes alloy compositions (Nelem elements) and their corresponding elemental features (30
features per element). The convolutional section comprises two Conv2D layers with kernel size
1×31, each followed by batch normalization and ELU activation (α = 0.2). A residual connection is
implemented between the input and the output of the convolutional section to facilitate gradient
flow. The flattened output is concatenated with three processing condition parameters before

entering the fully connected section, which consists of a hidden layer with 128 neurons and an output
layer. Dropout (p=0.5) is applied after the hidden layer to prevent overfitting.

These networks were trained using the Adam optimizer with a learning rate of 5×10⁻⁴ and batch size
of 16. The mean squared error (MSE) was used as the loss function. All input features were
standardized using the standard scaler from scikit-learn [11]. The dataset was randomly split into
training (70%), validation (15%), and test (15%) sets. The model was trained for 1000 epochs with
early stopping monitored on the validation set to prevent overfitting. Model performance was
evaluated using the coefficient of determination (R²) score.

Table S6 Composition constraints for SMAs
Element Lower limit (at. ratio) Upper limit (at. ratio) Step (at. ratio)

Ti 0.2 0.55

Ni 0.2 0.55

Cu 0 0.2

Hf 0 0.2

Co 0 0.1

Zr 0 0.2

Fe 0 0.1

Pd 0 0.33

Ta 0 0.05

Nb 0 0.2

V 0 0.1

0.001

Table S7 Composition constraints for Ti Alloys
Element Lower limit (at. ratio) Upper limit (at. ratio) Step (at. ratio)

Ti 0.6 0.8

Al 0 0.1

Zr 0 0.2

Mo 0 0.2

V 0 0.15

Ta 0 0.2

Nb 0 0.2

Cr 0 0.1

Mn 0 0.1

Fe 0 0.1

Sn 0 0.1

0.001

Table S8 Composition constraints for HEAs
Element Lower limit (at. ratio) Upper limit (at. ratio) Step (at. ratio)

C 0 0.06

Al 0 0.16

V 0 0.33

Cr 0 0.4

Mn 0 0.5

Fe 0 0.6

Co 0 0.5

Ni 0 0.6

Cu 0 0.36

Mo 0 0.1

0.001

Table S6-S8 present the considered elements and corresponding compositional constraints for
SMAs, Ti Alloys HEAs test environments. For determining the number of all possible compositions
in the design spaces, we implemented a dynamic programming approach, which is available in our

open-source code repository.

Section 7. Brief discussion of gradient ascent as inner loop argmax

We note that for EI, one common associated issue is that the AF value gradually approximates 0 as
the experimental iterations proceed. This is challenging for gradient-based optimization methods
(including SLSQP), as the "gradient values" will almost vanish in these cases. However, researchers
have already come up with using logEI [13] instead of the original EI, as EI approaches 0, logEI →
-∞, mitigating the vanishing EI value problem. For our experiments here, we only use the original
EI function values for the comparison results provided in the main text. This will cause an issue for
gradient-based EI maximization and we expect better results if we implement logEI for our methods.

We examined two current, still actively maintained BO implementations, BayesianOptimization
[14] and BoTorch. While BayesianOptimization relies on gradient values from finite difference
calculations, BoTorch defaults to using automatic differentiation based on PyTorch for gradient
computation. However, neither provides gradient calculations from GPR inputs back to composition
inputs, which motivated our work.

Section 8. Brief clarification of design choice considerations

The number of initial compositional guesses, 20×Nelem, was empirically determined from our large
scale simulated experiments, showing good performance across different systems while maintaining
reasonable resource consumption. It is worth noting that in both BoTorch and BayesianOptimization
packages, this parameter is typically set as a fixed value (e.g., around 10) and does not vary with
x/composition dimensionality. We believe our choice of this parameter setting is sufficiently
conservative to achieve (at least) comparable inner loop results with BoTorch (considering multiple
parallel runs).

As for random sampling strategies, while this approach has been validated by both BoTorch and
BayesianOptimization packages, there remains potential for improvement. Specifically, strategies
for generating more diverse initial samples as start points to initiate gradient ascent would be
interesting. However, this exploration remains beyond the current scope of this work.

Citations
[1] K.E. Knipling, R.A. Karnesky, C.P. Lee, D.C. Dunand, D.N. Seidman, Precipitation evolution in
Al–0.1 Sc, Al–0.1 Zr and Al–0.1 Sc–0.1 Zr (at.%) alloys during isochronal aging, Acta Materialia
58(15) (2010) 5184-5195.
[2] Z. Rao, P.-Y. Tung, R. Xie, Y. Wei, H. Zhang, A. Ferrari, T. Klaver, F. Körmann, P.T. Sukumar, A.
Kwiatkowski da Silva, Machine learning–enabled high-entropy alloy discovery, Science 378(6615)
(2022) 78-85.
[3] P. Dang, J. Hu, Y. Xian, C. Li, Y. Zhou, X. Ding, J. Sun, D. Xue, Elastocaloric Thermal Battery:
Ultrahigh Heat‐Storage Capacity Based on Generative Learning‐Designed Phase‐Change Alloys,
Advanced Materials (2025) 2412198.
[4] C. Li, Q. Liang, Y. Zhou, D. Xue, A knowledge‐based materials descriptor for compositional
dependence of phase transformation in NiTi shape memory alloys, Materials Genome Engineering
Advances (2024) e72.
[5] J. Frenzel, A. Wieczorek, I. Opahle, B. Maaß, R. Drautz, G. Eggeler, On the effect of alloy
composition on martensite start temperatures and latent heats in Ni–Ti-based shape memory alloys,
Acta Materialia 90 (2015) 213-231.
[6] J. Wilson, F. Hutter, M. Deisenroth, Maximizing acquisition functions for Bayesian optimization,
Advances in neural information processing systems 31 (2018).
[7] Y. Zhang, C. Wen, P. Dang, T. Lookman, D. Xue, Y. Su, Toward ultra-high strength high entropy
alloys via feature engineering, Journal of Materials Science & Technology 200 (2024) 243-252.
[8] M. Balandat, B. Karrer, D. Jiang, S. Daulton, B. Letham, A.G. Wilson, E. Bakshy, BoTorch: A
framework for efficient Monte-Carlo Bayesian optimization, Advances in neural information
processing systems 33 (2020) 21524-21538.
[9] J. Gardner, G. Pleiss, K.Q. Weinberger, D. Bindel, A.G. Wilson, Gpytorch: Blackbox matrix-matrix
gaussian process inference with gpu acceleration, Advances in neural information processing systems
31 (2018).
[10] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N.
Gimelshein, L. Antiga, Pytorch: An imperative style, high-performance deep learning library,
Advances in neural information processing systems 32 (2019).
[11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P.
Prettenhofer, R. Weiss, V. Dubourg, Scikit-learn: Machine learning in Python, the Journal of machine
Learning research 12 (2011) 2825-2830.
[12] C. Wen, Y. Zhang, C. Wang, H. Huang, Y. Wu, T. Lookman, Y. Su, Machine-Learning-Assisted
Compositional Design of Refractory High-Entropy Alloys with Optimal Strength and Ductility,
Engineering (2024).
[13] S. Ament, S. Daulton, D. Eriksson, M. Balandat, E. Bakshy, Unexpected improvements to
expected improvement for Bayesian optimization, Advances in Neural Information Processing Systems
36 (2023) 20577-20612.
[14] F. Nogueira, Bayesian Optimization: Open source constrained global optimization tool for Python,
2014. https://github.com/bayesian-optimization/BayesianOptimization. 2025).

https://github.com/bayesian-optimization/BayesianOptimization

