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Supplementary Information
Supplementary Algorithm S1 Ray casting algorithm

Algorithm 1 Ray Casting Algorithm

Input: ligand 3D PH4 point p € R™3 | protein vertices V € R™3, & = 1077
1: Construct convex hull H = ConvexHull(V)
2: Extract triangles of polyhedron # = H. simplices
3: Set ray origin point 0 « [1.0, 0.0, 0.0]
4: Initialize intersection count ¢

S:for tin £ do

6: Extract triangle vertices (vg, v4, V3) = V[t]

7: Compute edges e; = v, — v, €3 = V; — 1

8: Compute determinant d = e; - (0 X e5) (Eq. 1)

9: if |d| < ¢ then

10: continue to next triangle

11: Compute barycentric coordinates u = %[(0 — 1) (0 xez)](Eq.2)
12: ifu <0oru> 1 then

13: continue to next triangle

14: Compute barycentric coordinates v = 3{0 -[(0 —vp) X eq]} (Eq. 3)
15: ifv <Ooru+wv>1then

16: continute to next triangle

17: Compute ray intersection distance t = %{ez “[(0 —vy) X e1]} (Eq. 4)
18: ift > € then

19: c—c+1

Output: boolean(c mod 2 == 0)




Supplementary Algorithm S2 Molecular voxelization and featurization algorithm

Algorithm 2 Molecular Voxelization and Featurization Algorithm

Input: ligand 3D atomic structure M?’:l € R¥¥Y*Z protein 3D atomic structure P € R**¥*Z 3D voxelized box
boundary B € [[Xmin, Xmax], [Ymin: Ymax], [Zmins Zmax]]

1: Obtain PH4 feature (f) representation U{(x, y, ), f}}-, = GetFeaturesForMol(MIL,). f € {0,..., 5}

2: Convert coordinates U(x, v, z), into 3D grid (g) points GIL, € R¥s*Ys*%s where Xg € [Xmins Xmax), Vg €
[Vmin: Ymaxl: Zg € [Zmins Zmax]

3: Embed protein pocket P into 3D grid vertices V € R*v*¥»*#» where V = ReadPocket(P)

4:foriinl,...,N do

5 if G is outside convex hull formed by V then

6: U(f)=-1

7 end if

8: end for
9: Obtain feature array U{G, F}}L, € RE*F, where UL, « Flatten(U{(x,, v, 2z), f ! =— 1}L))

Output: flatten one-hot 3D feature matrix F € RE*F>*M

Supplementary Algorithm S3 Matrix simplification algorithm

Algorithm 3 Matrix Simplification Algorithm

Input: flatten one-hot 3D feature matrix F € RE*F*M
I: Reverse feature matrix F « ~F
2: Element-wise multiplication for all compounds D = ]_[iv=1 F
3: Let attention index 2 : = {(i, j) | D[i][j] = 0}. Z € RE*?
4: Initialize simplified matrix 7 € RM *¢
5:foriml,...,N do
6: forjinl,...,G do
7 T i = Fi[2, 2"]
Output: 2D attention index 2, 2D trainable tensor T

Supplementary Algorithm S4 Training and weighting procedures of Ph3DG

Algorithm 4 Training and Weighting Procedures of Ph3DG

Input: 2D trainable tensor 77, 2D attention index Z, 3D voxelized box boundary B € [[xmin, ¥max]s [Vinin: Ymax) [Zmin: Zmax] ]
1: Initialize weight tensor w
2: while Ly not converge do
3 fo,ve < SplitDataset(T)
4: ¥ = pooling(fg ® wg) (Eq. 6)
5 L = MSE(J, yg) between predicted label § and true label vy (Eq. 7)
6 Update wg by minimizing £
7: Obtain training output weight tensor W € R¢ by model.state_dict()
8

: Obtain weight-grid mapping M € R® * 3 containing grid G, feature type F, and weight W via Z € R¢* 2

o

- Obtain 3D grid coordinate grid_x, grid_y, grid_z « Unravel(M¢)
Output: weighted grid ((G, F, W, x4,4,24))




Supplementary Table S1. Benchmarking performance of different baseline models.

Task Metric Ph3DG EquiScore PLANET Glide Phase Autodock-Vina
AUROC 0.928£0.132 0.955*+0.082 0.784%0.173 0.164%0.256 0.765*0.221 0.660%0.177
AUPRC 0.997 £ 0.003 0.656 £0.208 0.758+0.189 0.352+0.306 0.7891+0.268 0.657 £ 0.163
Success(1%) 0.7381+0.139 0.503*0.336 0.592+0.207 0.351+0.354 0.500+0.500 0.567+0.324
Training
Success(5%) 0.719%0.167 0.537*0.313 0.745%f0.103 0.2611%0.331 0.500*0.500 0.545%0.334
Success(10%)  0.687 £0.160 0.541+0.307 0.797 £0.158 0.229+t0.295 0.498+0.498 0.552£0.336
BEDROC(®=20) 0.015%*0.002 0.087+0.045 0.022*0.012 0.008£0.009 0.012*0.006 0.009 £ 0.002
Recall 0.254%0.111 0.044*0.059 0.348%0.368 0.169%0.116 0.113*0.116 0.061F0.112
Enrichment 469%442 0453%f0621 4.84%4.98 3.09t2.55 1.75 X 1.77 0.907 £1.26
Screening Ranking! 0.549*0.257 0.651+0.209 0.349%0.289 03611+0.309 0.445*0311 0.382%0.261
Recalled target 8 3 5 6 5 6
Recalled
44 11 51 39 17 15
conformer

2 All results are in percentage except for Enrichment factor. Best results are highlighted in bold.

Supplementary Table S2. Detailed model settings for Ph3DG-MLP variants.

Data set Ph3DG Ph3DG (w/o EV)
Number of training molecules 2765 2773
Number of datapoints 13735 13780
Feature dimensions 5916 11876
Hyperparameters
Fold of cross validation 5
Number of epochs 10000
Batch size 16
Learning rate 0.001
Early stopping patience 500

Data set split type StratifiedKFold (shuffle)

2 Hyperparameters listed are specific for NK1R data set. For other targets parameter settings are not specifically adjust with different
feature dimensions and number of data points.

bPh3DG (w/o EV) indicates Ph3DG model without exclusion volume constraints.

Supplementary Table S3. Detailed parameter settings for Ph3DG-Diff.

Hyperparameters Ph3DG-Diff
Number of fully-connected layer 3
Number of neurons for each layer 5917-5916-1
Timesteps 100
Range of noise (5) 0.001~0.2
Fold of cross validation 5
Number of epochs 1000
Batch size 32
Learning rate 10+
Early stopping patience 50

aNumber of neurons listed are specific for NK1R data set. For other targets parameter settings are fixed.



1. ChEMBL activity assays 5. Ligand pharmacophore recognition and
6,026 entries exclusion volume voxelization
ra. K; and IC5, merged h (a. Obtain molecular properties B
b. Affinity averaged and outlier removed b. Embed to 3D grid box
\ G- Quantitative and qualitative combined y, \.C- Masking untrainable and clash points )
2, Active + inactive processed 6. Pharmacophore model training
1,832 + 1,854 unique compounds =
q p P < (a. Hadamard product between initial and )
a. Inconsistent activities eliminated i matnxl .
b. SMILES validity examined b. Average pooling for readout function
- ) \.c. MSE loss minizing activity difference )
3. Total SMILES dataset 7. Model evaluation to select different
2,773 unique compounds iteration of cross validation
a. Binary activity classified a. Classification accuracy of active and
b. Conformation generated and refined inactive training compounds
c. Property calculation and O3A b. Structural validity visualization:
alignment 1) Feature distribution; 2) atomic clash
4. Total conformation dataset 8. Model testing and screening

69,103 unique conformers (feature matching and dynamic modeling)

Supplementary Figure S1. Data preparation and preprocessing. a.Data cleaning procedures for NK1R as an exampler. Step 1. Target-
specific ligand binding activity data are searched and filtered through the ChEMBL database. Step 2. Compounds are classified into
‘active’ and ‘inactive’ categories based on activity labels. Step 3. 3D conformational representations are generated by RDKit and
embedded in PH4 feature numeric form. b. Data preprocessing procedures. Step 5. Excluded and untrainable grids are recognized
and eliminated to prepare input array. Step 6. Model training with initial input array and random weight matrix. Step 7. Model
valuation considering predicted PH4 score and PH4 distribution.
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Supplementary Figure S2. Preliminary study of the optimal number of embedded conformers. AUROC classification accuracy of
Ph3DG-MLP model is used to evaluate the performance of embedding different number of conformers. The more conformers per
molecule embedded, the more accurate the model is.
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Supplementary Figure S3. The evaluation of objective function at the training stage of Ph3DG-MLP (a) and Ph3DG-Diff (b). Training
loss of the first training epoch for different targets are shown. Early stop is applied to Ph3DG-Diff if MSE loss function is not
decreasing within 50 epochs.
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Supplementary Figure S4. Correlation between Ph3DG prediction AURCO and size of training dataset. Orange dashed line represent
the fitting curve of all benchmarking systems. Detailed benchmarking targets see methods (“Training data collection” section).
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Supplementary Figure S5. Ph3DG-MLP performance of bioactivity prediction by multiple benchmarking targets. Colors of AUROC
curves correspond to Fig. 3b in main text.
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Supplementary Figure S6. Bioactivity prediction of ADRB2 target for multiple benchmarking methods.
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Supplementary Figure S7. Barplot of success rates compared to benchmarking methods. Results show the robust potential to
retrieve positives form the top 1% active compounds of Ph3DG-MLP model. Source data are provided in Zenodo.
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Supplementary Figure S8. Interpretability of the Ph3DG in constructing PH4 models. The essential PH4 features (top-10 features
matching reference ligand shown in large transparent sphere, top-50 features shown in small sphere) and the boundary of PH4
features (shown in gray dots) captured by Ph3DG. Chemical structures of reference compounds (inactive groups highlighted) and
distance distributions of PH4 features are exhibited in subfigure. PH4 distances (Ph3DG in blue, CavPharmer in orange, and Phase in
green) are calculated by a specific PH4 features towards the center of mass (COM) of the reference. PH4 feature colors correspond
to those shown in Fig. 3c in main text.
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Supplementary Figure S9. Schematic representation of CavPharmer modeled PH4. Receptors are in white cartoon. Exclusion
volumes are represented in pink surface, while key PH4 are indicated by spheres in different colors. Blue: HBD; red: HBA; orange:
positive electrostatic charges; yellow: negative electrostatic; gray: hydrophobic; green: root of HBD/HBA. CavPharmer exhibits
comparatively sparse distribution patterns for all benchmarking systems.
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Supplementary Figure S10. Schematic representation of Phase modeled PH4 features. Ligands are represented in turquoise stickers.
Exclusion volumes are represented in white spheres, while key PH4 are indicated by spheres in different colors. Light blue: HBD; pink:
HBA; green: hydrophobic; orange: aromatic ring. Arrows represent the specific directions of hydrogen bonds. Phase developed
pharmacophore models based on a single protein-ligand complex, thus demonstrating densely distributed PH4 as depicted in Fig. S8.
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Supplementary Figure S11. Boxplot statistics of screening recalls. a. Counts of all prediction methods recalling benchmarked targets.
Color correspond to Fig. 2h in main text. Percentages of the recalled molecules among all TPs in all benchmarked systems are
labeled. b. Recall rates of benchmarking methods across all benchmarked targets. Numbers in brackets indicate the count of
screening methods successfully retrieved positive compounds. PLANET prediction outliers with its values are labeled in red. c. Total
true positive molecules exist in screening data set across multiple benchmarking systems. Positive conformers represent molecules
with different isomers. The summation of TPs are labeled across all benchmarked systems to calculate percentages in panel a.
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Supplementary Figure S12. Training and screening performance of Ph3DG on GPCR targets. a, b, c. Boxplots of AUROC, AUPRC and
success rate (top 1%) across benchmarking methods, respectively, showing the comprehensive performance of Ph3DG in predicting
ligand-protein bioactivity. Numbers in bracket indicate the number of targets successfully predicted by a specific method. Stars
represent the outliers for each baselines. d, e, f. Statistics of recall rate, enrichment factor and ranking probability, respectively,
showing the robust performance of Ph3DG in screening and retrieving positive compounds. In panel d and e, number in brackets
indicate the number of GPCR targets successfully screened by a specific method, while for panel f, those numbers represent the
number of TP compounds recalled by a specific method. Representative GPCRs tested in this study involves ADRB2, CCR5, CXCR4 and
NK1R.

60 - Positive molecules 59
Positive conformers

30 1 26
21

14
10 12

0 T T T :
@ A \a} 2 5 s A 13
G b O ST W e o

Supplementary Figure S13. Statistics of true-positives (TPs) used in benchmark studies. a. Total true positive molecules exist in
screening data set across multiple benchmarking systems. Positive conformers represent molecules with different isomers.
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Supplementary Figure S14. Screening protocol for NK1R and essential hit compounds with novel backbone. a. Screening processing
is initialized with a comprehensive library comprising FDA-approved, clinical drug-like small molecule compounds. Ph3DG-MLP is
applied to train pharmacophore model and screen compounds with more than 4 matching features. 12 compounds with
computational and expertise inspection are tested in vitro resulting in 3 distinct bioactive hits. b. 2D chemical structures of bioactive
hits (named Alpha-NK1-002, Alpha-NK1-003 and Alpha-NK1-005) and modified lead compounds (Alpha-NK1-005.1, Alpha-NK1-005.2,
Alpha-NK1-005-f1 and Alpha-NK1-005-f5). Essential functional groups comprising pharmacophores are highlighted.

Topa-HY (5.13%)

Top16-LH (3.42%)

X Top16-LH (3.42%)
Top4-HY (5.13%) Top4-HY (5.13%

C2: Lomitapide C3: Vicirvoc C5: Fexofenadine

Supplementary Figure S15. PH4 patterns of NK1R screened compounds. Ligands are represented in turquoise stickers.
Pharmacophore grid points are indiciated in mesh with color corresponding to Fig. S8. Fig. S16a: Alpha-NK1-002; b: Alpha-NK1-003; c:
Alpha-NK1-005.
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Supplementary Figure S16. Synthesis routes of NK1R optimized compounds. a. Synthesis of Alpha-NK1-002 and Alpha-NK1-003; b.

Alpha-NK1-004; c. Alpha-NK1-006; d. Alpha-NK1-007.
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