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S1 Substrate binding energy results

In this study, the substrate binding energy of acetonitrile was used as an alternative target

property to the stability of a metal-ligand complex.1

To obtain substrate binding energies, an additional step to the workflow, outlined in

Figure S4, was introduced. Following complex sorting, automated removal of the acetonitrile

substrate from the complex structures was performed (vide infra). The substrate binding

energy is defined by the following formula:

Ebind = EDFT,opt,complex − (EDFT,opt,complex−nosubs + EDFT,opt,subs) (1)

In this equation, substrate binding energy is described by the DFT optimized energy differ-

ences between the complex, (EDFT,opt,complex) minus the sum of substrate-removed complex

(EDFT,opt,complex−nosubs) and the energy of non-bonded substrate (EDFT,opt,subs). Performed

analysis for substrate binding energy is the same as for stability. First, energies between

ligand configurations are compared to investigate trends in configuration most favorable in

energy.

S1.1 Energy differences between ligand configurations

Binding energy results are visualized in Figure S1a, On the left side, interaction ∆Ebind be-

tween ligand configurations are plotted for each metal center. Binding energy differences are

depicted in the right graphs. Figure S1a illustrates the interaction ∆Ebind among iridium

ligand configurations. At the top of this figure, the general reference structures of the ligand

configurations are displayed, whereas the structures for the other ligand configurations are

depicted at the bottom of the graph. In this figure, energy of the H-N axial ligand pair

complexes are compared with with H-H axial ligand pair complexes for the tested bidentate

ligands. A negative ∆Ebind is observed for the majority of bidentate ligands. This indicates

that energy of the H-H axial ligand pair configuration is more favorable in energy over the
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Figure S1: Substrate binding energy differences between a reference configurational isomer,
shown at the top of the graphs, and other configurational ligand configurations, shown in
the bottom of the graphs, for set of bidentate ligands for iridium (a), ruthenium (b) and
manganese (c) complexes
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H-N axial ligand pair ligand configurations for most bidentate ligands.

Figure S2b shows the binding energy differences between ligand configurations of ruthe-

nium complexes. In this figure, the energy of complexes with axial ligands C-H, C-N and H-H

are compared with that of complexes featuring the H-N axial ligand pair. General structure

for the reference H-N axial ligand pair is shown at the top of the figure, and compared struc-

tures are shown at the bottom. The lowest energy configurational configuration often varies

among the different bidentate ligands. However, a positive ∆Ebind is observed for a majority

of ligand configurations, indicating that the H-N axial configuration is clearly not favorable

in terms of substrate binding energy in comparison to the other ligand configurations.

∆Ebind data for manganese ligand configurations is shown in Figure S1c. In this figure,

substrate binding energies of the C-N, C-H and C-C ligand configurations are compared to

the substrate binding energy of the H-N isomer. A significant number of ligand configura-

tions show a positive ∆Ebind. However, no clear majority of a configuration at the global

minimum in energy is observed.

Figure S2 illustrates the distribution of lowest binding energy ligand configurations among

the axial ligand pairs. However, the preference of iridium complexes is less overwhelming

for binding energy as opposed to interaction energy. For binding energies, the H-H axial

ligand pair is lowest in energy for 64.7% of bidentate ligands, which is significantly lower

than the 92% observed for interaction energies. For ruthenium and manganese complexes,

most observed global minimum configurations also changed for binding energies compared

to interaction energies. Nevertheless, the determination of the lowest energy configurational

configuration varies among the tested bidentate ligands. In most cases, no specific axial

ligand pair is significantly more abundantly favorable over the other ligand configurations.

S1.2 Effect of metastable ligand configurations

Figure S3 visualizes configuration statistics for binding energy data of the generated ligand

configurations. Figure S3a shows the number of ligand configurations present within 10
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Figure S2: Distribution of the lowest binding energy configuration among axial ligand pairs
for the 88 bidentate ligands in combination with 3 metal centers

Figure S3: Number of ligand configurations present within a 10 kJ/mol energy range from
the lowest binding energy configuration for the researched bidentate ligands (a) and the
percentage of bidentate ligands for which multiple ligand configurations are found within
the 10 kJ/mol energy range (b)
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kJ/mol range from lowest binding energy for each bidentate ligand. In Figure S3b, the

percentage of bidentate ligands for which multiple ligand configurations have binding energies

within 10 kJ/mol from the minimum is visualised. Similarly to interaction energy, 18.2% of

iridium complexes contain multiple ligand configurations present within the energy range.

Moreover, a slight increase in the percentage of bidentate ligands containing multiple ligand

configurations within the 10 kJ/mol energy range is observed. Namely, 78.4% of ruthenium

complexes and 72.7% of manganese complexes.

S2 Automated substrate removal

Structures of TM-complexes without the substrate are essential for determining substrate

binding energy. The automation of substrate removal has the potential to save time and re-

duce errors in structures. The general workflow of the substrate remover is shown in Figure

S4

The substrate is consistently found at a fixed location for MACE generated xyz files.

Figure S4: Automated substrate removal workflow, showing inputes (1) and (2), substrate
transformation (3) and workflow output (4)

A MACE generated .xyz file consists of individual rows for each atom present in the TM-

complex. All hydrogen atoms present are located at the bottom rows of the file. Substrate
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hydrogen atoms are consistently found at the initial hydrogen rows, while all non-hydrogen

substrate atoms are found at the foremost rows. This arrangement of atoms makes substrate

removal straightforward if the number of hydrogen and non-hydrogen atoms of the substrate

is known.

The following input has to be provided to the substrate remover: TM-complex direc-

tory, bidentate ligand number and substrate information. Substrate SMILES have already

been supplied for structure generation input. For easy and integrated use of the substrate

remover, these SMILES should also be used as input for the substrate remover. However,

SMILES only represent the non-hydrogen atoms of the substrate. Fortunately, SMILES can

be converted into chemical formulas through RDKit tools, as shown in Figure S4-3. With

the chemical formula known, it becomes feasible to iterate over this formula to obtain the

specific types and quantities of atoms present in the substrate. From this information, the

number of hydrogen and non-hydrogen atoms can be determined.

Once substrate information is known, the substrate is removed from the MACE gener-

ated TM-complex. A new directory called substrate removed is created to save the newly

created complexes without substrate. The suffix no substrate is added to the end of each

individual file to denote the difference from the original file.

S3 Details on machine learning

Prior to applying machine learning (ML) algorithms, the dataset was pre-processed to ensure

consistency and relevance. Specifically, only the lowest-energy conformers of the metal-ligand

complexes were selected, ensuring that each configuration was represented by a single vector

of physical-chemical descriptors. In the OBeLiX package, donor atoms in the bidentate

ligand are labeled as either ”min” or ”max.” To standardize the descriptor representation

for ML and maintain consistency in donor atom labeling, the H-N configuration was chosen
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as a reference. This ensured that descriptors dependent on the ”min” and ”max” labels were

oriented uniformly across all configurations.

The Random Forest (RF) model was implemented in our ML pipeline which can be

found on our Github page (https://github.com/epics-group/obelix-ml-pipeline). Code from

this pipeline was modified to allow modeling with Logistic Regression (LR). The scikit-learn

Python package was used for all functionalities included this pipeline. For RF, feature im-

portances were calculated using the deault Gini importance as implemented in SKlearn. The

feature importances from LR were calculated by multiplying the magnitude of coefficients

with the standard deviations of the corresponding parameters in the data.

An 80/20 train/test split was used for the in-domain modeling approaches. For out-of-

domain modeling approaches, a fixed set of 16 ligands and their configurations were kept

out of the training set. For each training, a 5-fold cross-validation method is applied. A grid

search cross-validation method was used for selecting hyperparameters. Within this grid

search, the options for each hyperparameter of the RF models were:

• ’bootstrap’ = [False],

• ’max depth’ = [5, 50, 100, None], *None applied only to OHE-based models

• ’max features’ = [3, 5],

• ’min samples leaf’ = [1, 2, 5, 10],

• ’min samples split’ = [2, 5, 10],

• ’n estimators’ = [50, 100, 200],

The options for each hyperparameter of the LR models were:

• ’penalty’ = [’l1’], ’l2’, ’elasticnet’, None],

• ’C’ = [0.001, 0.01, 0.1, 1, 10,100],

• ’solver’ = [’liblinear’, ’lbfgs’]
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For modeling the stability of ligand configurations, the class weight variable was added

with the following options: ’class weight’ = [’balanced’, ’balanced subsample’, None].

S4 Transferability of descriptors across ligand config-

urations and metal centers

Figure S5 shows a heatmap for all calculated descriptors and the resulting R2. Each heatmap

shows all possible ’metal, configuration’ combinations on the x- and y-axes.
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Figure S5: Matrices for all calculated descriptors with R2 scores of linear models between
specific descriptor from one set of bidentate ligands with a specific metal and ligand config-
uration to another set with a different combination of metal and ligand configuration.
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S5 Orbital visualization

In this section, visualized orbitals for two bisphosphine bidentate ligands are shown. Figure

S6 shows the HOMO and LUMO orbitals for iridium complexes, Figure S7 shows the HOMO

and LUMO orbitals for ruthenium complexes, and Figure S8 shows the HOMO and LUMO

orbitals for manganese complexes. The HOMO, LUMO and HOMO-LUMO gap energies

are widely used electronic descriptors, as they can be related to the complex reactivity and

stability. Firstly, the highest occupied molecular orbital (HOMO) and lowest unoccupied

molecular orbital (LUMO) of the different complex configurations are visualized to illustrate

the differences in the electronic structure. The figures reveal a similar LUMO shape among

the different ligand configurations, primarily localized on the bidentate ligand backbone.

However, substantial variations in the nature of HOMO can be observed for different ligand

configurations.

Figure S6: HOMO and LUMO orbital visualizations for different ligand configurations for
iridium complexes
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Figure S7: HOMO and LUMO orbital visualizations for different ligand configurations for
ruthenium complexes
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Figure S8: HOMO and LUMO orbital visualizations for different ligand configurations for
manganese complexes
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S6 In-domain modeling of axial ligand configuration

pair

S6.1 Feature importances

The feature importances of discussed ML models are reported in Figure S9 for modeling on

the dataset with all metal centers and Figure S10 for modeling on a subset of the data with

only Mn(I) metal centers.

Figure S9: Feature importance of ML modeling of configuration over dataset with all metals
and ligand configurations
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Figure S10: Feature importance of ML modeling of configuration over subset of data with
Mn as the metal center

S7 Out-of-domain modeling of axial ligand configura-

tion pair

S7.1 ML performance

For ML modeling to distinguish between different axial configurations, we tested an out-of-

domain approach in which 16 ligands were kept as the test set, simulating a case of applying

the trained models to fully new ligands. The results are reported in Figure S13 and show
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good results on the full dataset or a subset with Ru(II) and Ir(III) metal centers. However,

similarly to the in-domain modeling, a performance drop is observed for the subset with

Mn(I) metal centers.

Figure S11: Performance metrics for the out-of-domain modeling of ligand configurations.
The performance of RF and LR are displayed in a red and blue bar respectively. The y-
axis denotes the Balanced Accuracy score and the x-axis specifies whether modeling is done
on the dataset containing all metal centers and ligand configurations or on a metal-specific
subset.

S8 In-domain modeling of stability of ligand configu-

rations

S8.1 Feature importances

The feature importances of discussed ML models are reported in Figure S12 for modeling

on a subset of the data with only Ir(III) metal centers.
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Figure S12: Feature importance of ML modeling of stability of configurations over dataset
with Ir and ligand configurations

S9 Out-of-domain modeling of stability of ligand con-

figurations

S9.1 ML performance
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Figure S13: Performance metrics for the out-of-domain modeling of the stability of ligand
configurations. The performance of RF and LR are displayed in a red and blue bar respec-
tively. The y-axis denotes the Balanced Accuracy score and the x-axis specifies whether
modeling is done on the dataset containing all metal centers and ligand configurations or on
a metal-specific subset.
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