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S1 Additional simulation details

S1.1 Parametrization of the vibronic dimer Hamiltonian

Table S1 details the parameters we used to construct a set of 1424 unique vibronic dimer Hamiltonians. We
formulate the Hilbert space for each system with kets of the form

|nea, nv1a, nv2a, neb, nv1b, nv2b⟩ (S1)

where nei is the electronic quantum number for molecule i (i = a, b) and nvki is the vibrational quantum number for
vibrational mode k (k = 1, 2 for the 1300 and 200 cm−1 modes, respectively) for molecule i. For each independent
vibrational mode, we constrained the maximum vibrational quanta in each ket to five.

Table S1: All parameters used to yield the 1424 unique vibronic dimer Hamiltonians. Figure 1 of the main text
provides a complementary graphical representation.

Parameter Units Values (Nsystems)

ϵ cm−1 14500 (1424)

JCoul cm−1

-800 (40), -775 (40), -750 (32), -715 (40), -700 (40),
-675 (40), -650 (32), -615 (40), -600 (40), -575 (40),
-550 (32), -500 (40), -450 (32), -400 (40), -350 (32),
-300 (40), -250 (32), -200 (40), -150 (32), -100 (40),
-50 (32), 0 (72), 50 (32), 100 (40), 150 (32), 200
(40), 250 (32), 300 (40), 350 (32), 400 (40), 450
(32), 500 (40), 550 (32), 600 (40), 650 (32), 700

(40), 750 (32), 800 (40)

λ1300 unitless
0.0 (178), 0.1 (178), 0.2 (178), 0.3 (178), 0.4 (178),

0.5 (178), 0.6 (178), 0.7 (178)

λ200 unitless 0.0 (176), 0.1 (312), 0.2 (312), 0.3 (312), 0.4 (312)

S1.2 Simulations of multidimensional spectra

We used the nonlinear response function formalism, in which the nonlinear molecular response function is calculated
from a combination of different pathways in Liouville space.1 The transition dipole operator for a light-matter
interaction is written2 in the Condon approximation as,
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µ(τi) = c† + c (S2)

where τi reflects the instantaneous time at which the impulsive light-matter interaction occurs.2,3 Free propagation
of the wavefunction under the system Hamiltonian during the time between two light-matter interactions j and k
is achieved with the time-evolution operator,

U(∆tjk) = e−iHsys∆tjk . (S3)

To lower the computational cost of time-propagation, we partition the transition dipole and time-evolution
operators into blocks based on the matrix indices of the electronic manifolds. For a generic operator O, the
operator Ojk is a subspace of O corresponding to the j and k block indices. This notation ensures that,

µge |g(τj)⟩ = |e(τj)⟩ (S4)

Uee(∆tjk) |e(τj)⟩ = |e(τk)⟩ (S5)

where we have represented the S0 and S1 states with g and e, respectively.

Forcing τj and τk to represent sequential moments in time (j = k+1), we simplify the notation with ∆tjk = tk,
in turn recovering the common notation of the coherence (t1), waiting (t2), and rephasing (t3) time delays in 2DES.
The third-order nonlinear response functions are thus,3

R1(t1, t2, t3) = ⟨i|U†
gg(t1)U

†
gg(t2)U

†
gg(t3)µ

†
egUee(t3)µgeUgg(t2)µ

†
egUee(t1)µge |i⟩ (S6)

R2(t1, t2, t3) = ⟨i|µ†
geU

†
ee(t1)U

†
ee(t2)µegU

†
gg(t3)µ

†
egUee(t3)Uee(t2)µgeUgg(t1) |i⟩ (S7)

R3(t1, t2, t3) = ⟨i|µgeU
†
ee(t1)µegU

†
gg(t2)U

†
gg(t3)µ

†
egUee(t3)µgeUgg(t2)Ugg(t1) |i⟩ (S8)

R4(t1, t2, t3) = ⟨i|U†
gg(t1)µ

†
geU

†
ee(t2)µegU

†
gg(t3)µ

†
egUee(t3)Uee(t2)Uee(t1)µge |i⟩ (S9)

where Rn is the response function for Liouville pathway n, and |i⟩ is the initial state. For simplicity, we assume
that the system begins in the global ground state (i.e., |i⟩ = |0, 0, 0, 0, 0, 0⟩, following the form of eq S1). Eqs
S6 and S9 correspond to the non-rephasing ground-state bleach (GSB) and stimulated emission (SE) pathways,
respectively, while eqs S7 and S8 are the rephasing GSB and SE pathways, respectively.

We simulated all spectra in the rotating frame2,4 by removing one or two electronic quanta from the diagonal
entries of the blocks corresponding to the singly excited manifold of the electronic Hamiltonian. We included
phenomenological effects of system-bath interactions with the lineshape function,

g(t) = ∆E2t2ce
− ti

tc
+(

ti
tc

−1) (S10)

where ∆E captures energy gap fluctuations with correlation time tc.
5 We incorporated the lineshape function g(t)

by multiplying Ri=1,2,3,4(t1, t2, t3) along each time dimension with e−g(t). Following fast Fourier transformations
along t1 and t3, we calculated absorptive 2DES spectra with,

RAbs(ω1, t2, ω3) =

4∑
i=1

Re[Ri(ω1, t2, ω3)]. (S11)

For all parameters of the simulations, including those of the finite lineshapes, we defined values (Table S2) to reflect
typical conditions of 2DES experiments (see Refs. 2, 6, and 7, for example).
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Table S2: All parameters used to generate 2DES spectra from the 1424 vibronic dimer Hamiltonians.

Parameter Units Values

t1 fs [0 : 3 : 186]a

t2 fs [0 : 5 : 1245]a

t3 fs [0 : 3 : 186]a

npad unitless 256b

∆E cm−1
1300 (t1, t3)

c

125 (t2)

tc fs
40 (t1, t3)

c

300 (t2)
a Format: [minimum value: step size: maximum value].
b Length of zero padding prior to FFT operations.
c Optical coherences during t1 and t3 dephase faster than coherences during t2.

Hence, we scaled the lineshape parameters accordingly.

S1.3 Automated image resizing

The simulations described in the previous section yield spectra of size 256 × 256 along the ω1 × ω3 dimensions
(corresponding to approximately 11075 cm−1 along each frequency axis). Due to the energy scales of the system
Hamiltonians and the optical response simulation parameters, there is inherently low signal and therefore low
information in the outer regions of the spectra (e.g., Figure S1a). To generate smaller, more computationally
tractable spectra inputs to the NN, and to remove spectral regions with low information, we used an in-house script
to automatically trim the spectra around a central coordinate (ω1c, ω3c). The algorithm produces “resized” spectra
with size 151×151 (approximately 6500 cm−1 along each frequency axis; see Figure S1b), as mentioned in the main
text.

Figure S1: Example spectra (a) before and (b) after the automated trimming and centering algorithm. The example
spectra correspond to a system Hamiltonian with parameter values: JCoul = −500 cm−1, λ1300 = 0.2, λ200 = 0.

The trimming method works by first determining a central coordinate where the signal is most concentrated
(ω1c, ω3c). The trimmed spectra are then generated by collecting the desired sized subset of data around the central
coordinate. It is possible for the new spectra generated by our resizing algorithm to include indices outside the
ω1 × ω3 bounds of the original spectra; this would be the case, for example, if the signals in a given spectrum were
highly concentrated in a corner with very low signal everywhere else. In this case, the new pixels included in the
spectrum would have zero signal. We did not note any cases where this occurred in our data sets as our spectra

3



did not have this type of signal distribution.

S2 Additional machine learning details

S2.1 Architecture

As described in the main text, we extended the ML workflows of Parker and coworkers.8 Our ML framework
relies on the PyTorch library9 in Python. We herein use PyTorch notation to describe the relevant functions,
sub-libraries, etc. in our ML methods. We employed the Adam optimizer (torch.optim.Adam) to minimize the
CrossEntropyLoss cost function (torch.nn.CrossEntropyLoss). We identified the model predictions as the class index
with the highest score (torch.max), and computed probabilities with the Softmax function (torch.nn.Softmax) along
the class dimension. Prior to conducing performance analyses (e.g., F1 scores and top-k accuracies), we converted
the probabilities output from torch.nn.Softmax() to a NumPy array.

S2.2 Reproducibility

We used seeds in this work to enable reproducibility between runs. We initialized the trainable parameters of
the NN consistently by setting the PyTorch seed (torch.manual seed) in all runs to 2942. Prior to splitting the
dataset in to training and testing subsets, we shuffled the dataset with NumPy’s random number generation (RNG)
sub-library, which we seeded with 72067. Thus, all ML trials used the same subsets of the dataset for training and
testing. We also seeded the NumPy RNG for generating Hamiltonian-specific noise profiles while maintaining the
Hamiltonian-noise profile correspondence between different ML trials (see Section S2.4 for further details).

S2.3 Hyperparameter optimization

We performed a grid-search to determine optimal values for the hidden layer size, learning rate, and dropout
hyperparameters. Table S3 provides all the values of the grid search and Figure S2 shows model performance for
each combination. We found that the parameter set, abbreviated as [hidden layer size, learning rate, dropout], of
[500, 0.001, 0.2] yielded the maximum F1 score. This set differs from the parameter set [300, 0.001, 0.2] that we
used for this study due to our choice to trade a minor performance loss for a smaller hidden layer (F1 = 0.8448 and
0.8457 for 300 and 500 neurons, respectively), in turn enabling faster training times. For the number of epochs, we
examined the behavior of the loss function versus epoch and determined 30 epochs to be a sufficient compromise
between high testing accuracy and tractable training times (Figure S5). To avoid the massive computational cost
required to optimize hyperparameters for each uniquely polluted dataset, we performed the grid search solely on
the clean dataset and kept the resulting hyperparameters constant for all other ML trials.

Table S3: Parameters of hyperparameter grid search

Parameter Values

Hidden layer
size

100, 150, 200,
250, 300a, 350,
400, 450, 500

Learning rate
0.01, 0.0075,
0.005, 0.0025,

0.001a

Dropout 0.2a, 0.4
a Hyperparameters used for all trials in the manuscript.

We also used the Optuna optimization package10 to explore the effect of additional hidden layers. Note that
we performed this analysis on a version of the dataset with a lower numerical precision data type (float32, as
opposed to the float64 data type used in the rest of our study). From an Optuna scan with 123 trials (105 pruned,
18 complete), we found marginal performance gains from the addition of a second hidden layer (see Table S4 for
example trials).
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Figure S2: Test F1 scores (macro-averaged) as a function of hidden layer size and learning rate with dropout equal
to (a) 0.2 and (b) 0.4.

Table S4: Hyperparameter search with Optuna.

Parameter Example trial 1 Example trial 2

Number of hidden layers 1 2
Hidden layer size (layer 1) 344 276
Hidden layer size (layer 2) – 434

Learning rate 0.0067 0.0014
Dropout (layer 1) 0.1012 0.0307
Dropout (layer 2) – 0.0141

Optuna performance 0.556 0.593

S2.4 Random noise injection

We used the normal distribution function of Numpy’s Random sub-library to generate Gaussian noise profiles along
each signal dimension, with the sole exception that correlated additive noise was invariant along ω3 (constant
baseline offset for each pump slice, as shown in Figure 3b). To most transparently study how noise in the dataset
influenced ML, we ensured the following properties of the noise injection: (i) The noise profile injected to a given
spectrum in one ML trial was identical to that injected into the same spectrum during a different, independent ML
trial; (ii) No two 2DES spectra received identical noise profiles. While looping over the Hamiltonian index to add
noise to each spectra, we used the following procedural steps:

1. Call numpy.random.default rng() with a known seed determined from the system index.

2. Generate a 3D NumPy array of random noise, of size ω1 × ω3 × t2, such that the 2D noise profiles (ω1 × ω3)
are independent between each of the 250 t2 time points. In the case of correlated additive noise, we generated
a 2D NumPy array (ω1 × t2) that was then broadcasted along the ω3 dimension.

Seeding the NumPy RNG with Hamiltonian-specific seeds ensured property (i), and generating the noise arrays
with a single instance of NumPy RNG is highly likely to have ensured (ii). The only variable between ML trials
with differing amounts of noise injected was thus the standard deviation of the normal distribution (σ). Note that,
as we discussed in the main text, our approach does not treat any noise sources that maintain correlations along t2.

S2.5 Signal-to-noise ratio

The signal-to-noise ratio (SNR) is a common metric used in experimental spectroscopy. We define the SNR as
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SNR =
σS

σN + α
(S12)

where σS and σN are the signal- and noise-widths, respectively, and α is a constant (10−10) to avoid division by
zero. We determine the values of σS and σN as the mean of the absolute-valued-array for each clean spectrum and
its corresponding noise profile, respectfully. Figure S3a shows how the SNR depends on the category of noise.
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Figure S3: (a) Values of the SNR (averaged over all spectra in the dataset) versus σ for each noise category. (b)
Scale bar for the 2D spectra in panel (c). (c) Representative spectra with additive (upper) and intensity-dependent
(lower) noise for three σ values.
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In practice, experimentalists do not attempt to interpret spectra that are saturated with noise beyond recog-
nition. A similar practice should be incorporated into the training of NNs on noisy spectra. Thus, we defined a
threshold SNR (0.01) such that spectra with SNR values below 0.01 were removed from the training and testing
datasets. Figure S4 shows how the number of spectra removed from the full dataset as a function of σ. This
threshold yielded no dropped spectra for trials with intensity-dependent noise.

Figure S4: Number of spectra removed from the dataset versus σ for each noise category.

S2.6 Modeling the pump spectrum

We modeled pump spectra in this work with a Gaussian profile,

Ẽ(ω) = e
−4log(2)(ω−ωc)

2

∆ω2 , (S13)

where Ẽ(ω) is the electric field as a function of the pump frequency (ω = ω1), ωc is the carrier frequency, and
∆ω is the pulse bandwidth. Since convolution in the time-domain is equivalent to multiplication in the frequency
domain,4 we accounted for effects of the pump pulse spectrum by multiplying RAbs(ω1, t2, ω3) by Ẽ(ω1).
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S3 Example spectra

The supplementary documents for this study include several .mp4 video files that show example 2DES data (see
Table S5 for file details).

Table S5: Explanations of supplementary video files. All spectra correspond to a Hamiltonian with ϵ = 14500 cm−1,
JCoul = −250 cm−1, λ1300 = 0.6, and λ200 = 0.2.

File name Details

clean.mp4 un-polluted spectra (i.e., no effects of noise or pump resonance)

additive noise uncorrelated 0.001.mp4 spectra with uncorrelated additive noise (σadd = 0.001)

additive noise uncorrelated 0.01.mp4 spectra with uncorrelated additive noise (σadd = 0.01)

additive noise uncorrelated 0.1.mp4 spectra with uncorrelated additive noise (σadd = 0.1)a

additive noise correlated 0.001.mp4 spectra with correlated additive noise (σadd = 0.001)

additive noise correlated 0.01.mp4 spectra with correlated additive noise (σadd = 0.01)

additive noise correlated 0.1.mp4 spectra with correlated additive noise (σadd = 0.1)a

intensity noise 0.1.mp4 spectra with intensity-dependent noise (σint = 0.1)

intensity noise 1.mp4 spectra with intensity-dependent noise (σint = 1)
a Some frames dropped due to low SNR (see Figure S4).

S4 Additional results

Figures S5 through S7 show analysis performed during the model training stage. For clean training and test datasets,
the model performance exhibits the expected growth vs. epoch with an eventual plateau (Figure S6). In contrast,
in the the ML trial with σadd = 0.25, the model performance exhibits clear signs of the model memorizing the noise
signatures (Figure S7). Specifically, the model performance on the training dataset (Figure S7a) grows rapidly over
the first five epochs while the test F1 score (Figure S7b) remains essentially invariant. Thus, all performance gains
by the model on the training dataset vs. epoch are associated with memorizing the noise (as opposed to learning
transferrable knowledge for the inverse classification problem at hand).

Figure S5: Cross-entropy loss function for the un-polluted dataset.

Figure S8 shows several model performance metrics on the training and test datasets as a function of additive
noise σadd. For all datasets and pollutant types, we generally observed similar values for the accuracy and F1 scores
(note line overlaps in Figure S8b).
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Figure S6: Model performance vs. training epoch calculated as (a) accuracy and (b) F1 score (macro-averaged) on
the clean (unpolluted) training dataset, and (c) F1 score (macro-averaged) on the clean (unpolluted) test dataset.

Figure S7: Model performance (macro-averaged F1 score) vs. training epoch calculated on (a) training and (b) test
datasets polluted with additive noise (σadd = 0.25).

Figure S8: Model (a) accuracy and (b) F1 score metrics for datasets with additive noise. In (b), the micro-, macro-,
and weighted-averaged F1 scores are indicated by solid, dashed, and dotted lines, respectively.
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Figure S9 shows confusion matrices for ML trials as the amount of each category of noise is varied in the
datasets. We find that, in general, misclassifications that are more than one category away from the ground truth
become increasingly common as σ increases. For trials with the maximum amounts of uncorrelated additive and
intensity-dependent noise (the right-most panels of Figure S9a and Figure S9c, respectively), the misclassifications
are particularly prevalent near the center of the confusion matrix. This result suggests that, for these categories of
noise, the NN struggles most with dimers that have weak-to-intermediate electronic coupling (−500 ⪅ JCoul ⪅ 500
cm−1) when the amount of noise in the data is high. The right-most panel of Figure S9b shows similar behavior for
the case of maximum correlated additive noise, with the key distinction that the NN disproportionately predicts
JCoul = 0 cm−1when the ground truth is 0 < |JCoul| < 400 cm−1.

Figure S9: Confusion matrices for datasets polluted with (a) uncorrelated additive, (b) correlated additive, or (c)
intensity-dependent noise. Each confusion matrix corresponds to a full ML trial (Figure 2), where the corresponding
value of σ is inset.
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Figure S10: Model F1 score for the training dataset as a function of ∆ω and ωc of the pump pulses. The color scale
is based on the F1 score of 0.89129 from the clean dataset.
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