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1 Detailed Results

In-depth results for all models trained as part of this manuscript are provided in the table
below. Results include Top—1, -5, and —10 performances both on simulated data (after
pretraining) and experimental data (after finetuning). Results for all finetuned models

were verified with 5-fold cross-validation.
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2 Training Metrics: Patch size 25 vs 75
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Figure 1: Validation loss of training a model with patch size 25 and 75. The average
validation loss across five cross validations is plotted.
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Figure 2: Token Accuracy of a model with trained patch size 25 and 75. The average
token accuracy across five cross validations is plotted.



3 Transfer Function

3.1 Training

We trained a model to represent the transfer function from simulated to experimental IR
spectra on a total of 2,000 paired simulated experimental spectra. We split the data into
a 80/20 train and test split and train for a total of 50 epochs. Adam is used as optimizer
with 8,=0.9 and ($,=0.999. In addition to the simulated IR spectrum, we added a 2048-
dimensional Morgan fingerprint? of the molecule as well as an occurrence vector of the
functional groups as defined by Jung et al.> We ablate the number of layers (4 and 6),
the dimension of the bottleneck layer (128, 256 and 512), the learning rate (le-3 and
le-4), different final activation functions (sigmoid, absolute smoothing and exponential)
and various loss functions (SID and MAE). Definitions for the final activation and loss

functions are given below.

3.2 Final Activation Functions

Sigmoid
1

We used the standard sigmoid function as defined as: Sigmoid(z) = e —

Absolute Smoothing

Here we first take the absolute of the output of the model, followed by applying a
learned convolutional kernel of size five. Finally we take the absolute again. Defined
as: Abs_Smoothing(x) = |Convl1D(|z|)].

Exponential

Standard exponential. Defined as exp(x) = e”.

3.3 Loss Functions

Mean Absolute Error (MAE)

MAE defined as: "
> it [Ypred = Ytarget|
n

MAE(ypredy ytarget> -

Spectral Information Divergence (SID)*
SID first introduced by McGill et al.?.

. Ypred,i Ytarget,i
S]D(ypreda ytarget) = Z Ypred,i n (p—) + Ytarget,i In (&)

i=1 ytarget,i ypred,i



Table 2:

Hyperparameter tuning for the transfer function. Parameters tuned include the
loss and activation functions, learning rate, number of layers and the size of
the bottleneck layer. The models were evaluated using MSE, MAE and SID. In
increasing order of the sum of all three metrics.

LOS.S Actlva.t on Learning Rate n-Layers Bottlenfzck MSE MAE SID
function function Layer dim.
SID Sigmoid 0.001 4 258 0.005091 | 0.02972 | 0.03489
MAE  Abs. Smoothing 0.001 4 258 0.005072 | 0.02921 | 0.03561
MAE  Abs. Smoothing 0.001 4 512 0.004959 | 0.03072 | 0.03440
SID Exponential 0.001 4 258 0.005688 | 0.03095 | 0.03650
SID Sigmoid 0.001 4 512 0.005156 | 0.03261 | 0.03639
MAE  Abs. Smoothing 0.001 6 258 0.006153 | 0.03111 | 0.03997
SID Exponential 0.001 4 512 0.006043 | 0.03287 | 0.03884
MAE  Abs. Smoothing 0.001 6 512 0.006462 | 0.03133 | 0.04167
SID Sigmoid 0.0001 4 512 0.006618 | 0.03358 | 0.04098
SID Abs. Smoothing 0.001 6 512 0.006613 | 0.03354 | 0.04111
SID Abs. Smoothing 0.001 4 512 0.006530 | 0.03333 | 0.04231
SID Sigmoid 0.0001 4 258 0.006717 | 0.03398 | 0.04156
MAE  Abs. Smoothing 0.0001 4 512 0.005933 | 0.03414 | 0.04403
SID Sigmoid 0.001 6 258 0.006863 | 0.03390 | 0.04400
SID Exponential 0.001 6 512 0.007226 | 0.03386 | 0.04371
SID Exponential 0.0001 4 512 0.007073 | 0.03484 | 0.04396
SID Sigmoid 0.001 6 512 0.006919 | 0.03517 | 0.04394
SID Abs. Smoothing 0.001 6 258 0.007129 | 0.03515 | 0.04426
MAE Sigmoid 0.0001 4 258 0.007252 | 0.03339 | 0.04630
SID Abs. Smoothing 0.0001 4 512 0.006640 | 0.03536 | 0.04529
MAE  Abs. Smoothing 0.0001 6 258 0.007457 | 0.03355 | 0.04651
MAE Sigmoid 0.0001 4 512 0.007119 | 0.03460 | 0.04599
SID Exponential 0.0001 4 258 0.007415 | 0.03588 | 0.04611
SID Exponential 0.001 6 258 0.007022 | 0.03720 | 0.04521
SID Abs. Smoothing 0.001 4 258 0.007178 | 0.03647 | 0.04791
MAE Exponential 0.0001 4 512 0.007963 | 0.03468 | 0.05107
MAE Exponential 0.0001 4 258 0.008008 | 0.03488 | 0.05148
SID Sigmoid 0.0001 6 512 0.008078 | 0.03638 | 0.04993
SID Exponential 0.0001 6 512 0.008004 | 0.03701 | 0.05006
SID Sigmoid 0.0001 6 258 0.008241 | 0.03635 | 0.05092
MAE  Abs. Smoothing 0.0001 6 512 0.008168 | 0.03608 | 0.05291
SID Abs. Smoothing 0.0001 6 512 0.008023 | 0.03821 | 0.05180
SID Exponential 0.0001 6 258 0.008388 | 0.03772 | 0.05193
SID Abs. Smoothing 0.0001 6 258 0.007995 | 0.03886 | 0.05258
MAE  Abs. Smoothing 0.0001 4 258 0.007473 | 0.03814 | 0.05796
MAE Sigmoid 0.0001 6 258 0.009770 | 0.03806 | 0.06579
SID Abs. Smoothing 0.0001 4 258 0.008790 | 0.04519 | 0.07062
MAE Sigmoid 0.0001 6 512 0.01071 0.03985 | 0.08027
MAE Exponential 0.0001 6 258 0.01085 0.04148 | 0.08268
MAE Sigmoid 0.001 6 512 0.02235 0.06158 0.5496
MAE Sigmoid 0.001 6 258 0.02149 0.06072 0.5575
MAE Sigmoid 0.001 4 258 0.02185 0.06108 0.5573
MAE Exponential 0.0001 6 512 0.01887 0.05805 0.5672
MAE Sigmoid 0.001 4 512 0.02011 0.05934 0.5671
MAE Exponential 0.001 4 512 0.01916 0.05839 0.5741
MAE Exponential 0.001 4 258 0.01916 0.05839 0.5741
MAE Exponential 0.001 6 258 0.01916 0.05839 0.5741
MAE Exponential 0.001 6 512 0.01916 0.05839 0.5741

ot



4 Performance analysis compared to baselines

In the following sections, we provide a detailed performance analysis of our original
model®, the model by Wu et al.® and the model presented in this work. We analyse
the performance of each model with regard to the heavy atom count, functional groups
and the Tanimoto similarity between the predicted and ground truth molecules. The
analyses are carried out on the performance of the models on the 6-13 heavy atom subset

of the NIST database. Results across the five cross-validation folds are averaged.

4.1 Heavy Atom Count
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Figure 3: Top—1 and Top—10 performance against heavy atom count for the three models.

Shown in Figure 3 is the performance of all three models against the heavy atom count.
Across all models, a decrease in performance with the heavy atom count is observed,
stemming from the higher complexity of larger molecules and more noisy spectra. With
regards to the Top—1 accuracy, our model outperforms both other models. The model
by Wu et al.® and ours are comparable, in terms of Top-10 accuracy for molecules with
six to ten heavy atoms. For larger molecules our model starts to outperform the one by
Wu et al.®. Interestingly, the Top—1 performance of the model presented in this work is
comparable to the Top—10 performance of our previous work at a heavy atom count of

13, demonstrating the robustness of our revised architecture and training pipeline.

4.2 Functional Group Performance
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Figure 4: Performance of the models on subsets of molecules containing a specific func-
tional group. The Top—1, Top—5 and Top—10 accuracies are plotted.

To investigate where our model improves compared to the two baselines we analyse the
performance of our model, the one by Wu et al.® and our original model® on subsets of
molecules containing 16 different functional groups. Only functional groups are considered
with more than 80 occurrences across the experimental dataset. The results are shown
in Figure 4 in order of increasing Top—1 performance. Our model outperforms the Top—1
accuracy of the model by Wu et al.% across all functional groups and the same is the case

for the Top—5 and Top—10 accuracy for 11 out of 16 functional groups.

4.3 Tanimoto Similarity
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Figure 5: Tanimoto similarity between the Top-5 predicted molecules and the ground
truth for the three models. Only samples are considered in which the ground
truth is not present in the Top—5 predictions.



Figure 5 show the Tanimoto similarity between the Top—5 predicted molecules and the
ground truth. To analyse the extent to which the predicted molecules are close to the
ground truth in the case of model failure, only cases were considered in which the ground
truth is not present in the Top—5 predictions. The distribution is similar for the model by
Wu et al.% and the model presented in this work, with both significantly outperforming
our earlier work®. The median Tanimoto similarity lies at 0.476 for our earlier work, 0.560
for the model by Wu et al.® and 0.583 for the model presented in this work, demonstrating
that even if the model does not predict the correct molecule among the Top—5 predictions

the generated molecules are still very similar to the ground truth.

References

[1] H. L. Morgan, Journal of Chemical Documentation, 1965, 5, 107-113.

[2] D. Rogers and M. Hahn, Journal of Chemical Information and Modeling, 2010, 50,
742-754.

[3] G. Jung, S. G. Jung and J. M. Cole, Chemical Science, 2023, 14, 3600-3609.

[4] C. McGill, M. Forsuelo, Y. Guan and W. H. Green, Journal of Chemical Information
and Modeling, 2021, 61, 2594-2609.

[5] M. Alberts, T. Laino and A. C. Vaucher, Communications Chemistry, 2024, 7, 1-11.

6] W. Wu, A. Leonardis, J. Jiao, J. Jiang and L. Chen, The Journal of Physical Chem-
istry, 2025, 129, 2077-2085.



	Detailed Results
	Training Metrics: Patch size 25 vs 75
	Transfer Function
	Training
	Final Activation Functions
	Loss Functions

	Performance analysis compared to baselines
	Heavy Atom Count
	Functional Group Performance
	Tanimoto Similarity


