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GQCO model architecture and hyperparameter settings

Fig. S1 illustrates the model structure, and Table S1 lists the hyperparameter settings used in this work.
As mentioned in the main text, the entire model consists of 256 million parameters, with 127 million
allocated to the encoder and 129 million to the decoder. Note that this total number includes parameters
for all expert modules up to size 20. The number of parameters utilized for a specific problem size is
approximately 24 million, with 11 million in the encoder and 13 million in the decoder.

During DPO training, parameters are updated to increase the probability of generating the most
preferred circuit. Sampling a large number of circuits at once increases the probability of obtaining
circuits near the ground state, thereby enhancing training efficiency. In this study, for each number of
qubits n, the value of M was determined to maximize GPU memory usage. These settings are also
detailed in Table S1.

Training history

A multi-GPU strategy was used to train the model in a distributed environment. Hamiltonian coefficients
were generated independently on each GPU, losses were computed locally, and gradients were aggregated
across all GPUs to update the model parameters. The number of GPUs varied based on available
computational resources, ranging from 64 to 256 during training. The training process took approximately
20 days.

Fig. S2a illustrates the total computational cost for each training size stage, calculated by multiplying
the training time per GPU by the number of GPUs used. This metric represents the process time required
to train on a single GPU. Fig. S2b shows the product of the number of training epochs and the number of
GPUs, which corresponds to the total number of Hamiltonian coefficients generated during training, that
is, the number of combinatorial optimization problems processed during training. Both metrics increase
exponentially as the maximum problem size grows. As the number of qubits increases, a greater number
of training instances are required, and quantum circuit simulations take longer.
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Figure S1: Model archtecture. As shown in the Results section in the main text, the input combinatorial
optimization problem is converted into a graph representation, and the features are engineered. The
module containing the Graph Transformer layer is iterated 12 times, and the resulting node features,
arranged in node order, serve as the encoding representation. The decoder resembles the structure used
in GPT models: FeedForward refers to two linear layers with an activation function between them, and
Norm refers to the layer normalization layer. The four FeedForward modules and one linear layer module
are organized in a mixture-of-experts (MoE) structure.

Table S1: Hyperparameter settings for model architecture and training. n represents the problem size,
i.e., the number of qubits used in the circuit to be generated. For the hyperparameters that are not
listed, the default settings of PyTorch, PyTorch Geometric, and PyTorch Lightning were used.

Hyperparameter Value

Base settings Activation function GELU
Dropout rate 0.0
ϵ for layer normalization 1× 10−5

Encoder Depth 12
Number of attention heads 8
Dimension of the intermediate representations 256
Dimension of the intermediate feed-forward layer 1024

Decoder Depth 12
Number of attention heads 8
Dimension of the intermediate representations 256
Dimension of the intermediate feed-forward layer 1024

Training settings Optimizer Adam
Learning rate 1× 10−4

(β1, β2) for Adam optimizer (0.9, 0.95)
β for DPO 0.1
Evaluation frequency 500

Generation settings Maximum sequence length 2n
Vocabulary size 4n2 + 15 + 1
Number of samplings during training M for n = 3 1024

for n = 4 1024
for n = 5 512
for n = 6 384
for n = 7 256
for n = 8 192
for n = 9 128
for n = 10 96
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Figure S2: Computational costs for training across problem sizes. Blue bars represent the costs for base
training phase where all the weights of the model are optimized, while green bars indicate the costs for
expert tuning phase where each expert in the MoE layer is fine-tuned after the base training. (a) Total
computational time for each curriculum learning stage. The value is calculated by multiplying the process
time for distributed training by the number of GPUs utilized during the corresponding stage. (b) Gross
amount of training data across problem size. The total number of training data points is determined by
multiplying the number of GPUs by the number of training epochs. The value at each maximum problem
size represents the total data generated for that stage, including all problem sizes up to the corresponding
size. (c) Net amount of training data across problem size. This value is derived by adjusting the values
of (b) to reflect the net number of data points for each problem size, based on the selection probability
Eq. (4) of each size.

It should be noted that, at each problem size stage, problems up to the maximum size are generated
based on the probability Eq. (4) in the main text. As a result, the number of training instances in
Fig. S2b includes various problem sizes. Correcting this, we show the net number of training instances
for each specific problem size in Fig. S2c. This reveals that the number of training examples increases
more slowly with problem size, suggesting that curriculum learning and MoE structures may enhance
learning efficiency. However, the probability of generating each problem size based on Eq. (4) is not
optimized and may produce an excessive number of instances with small problem size. In other words,
fewer instances than those shown in Fig. S2c might be sufficient for learning smaller problem sizes, and
the observed scaling in Fig. S2c may be overly gradual.

Pseudocode for the training procedure

To clarify the training process further, we present the pseudocode in Algorithm S1.
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Algorithm S1 GQCO Training Procedure

Require: nsample: Number of circuit configurations sampled per iteration
RandomSize(·): Function sampling circuit size based on Eq. (4) in the main text
RandomAdjacencyMatrix(·): Function generating random adjacency matrix for given size
Hamiltonian(·): Function constructing Hamiltonian from adjacency matrix
Model(·; θ): Parameterized model generating tokens
Detokenize(·): Function converting tokens into quantum circuit unitary operators
ComputeEnergy(·, ·): Function calculating energies using given Hamiltonian and circuit
Loss(·): Function calculating loss according to Eq. (3) in the main text
Update(·): Parameter update function based on optimization algorithm

1: Initialize max size = 3, θt
2: while not converged do
3: size← RandomSize(max size)
4: A← RandomAdjacencyMatrix(size)
5: H ← Hamiltonian(A)
6: {t1, t2, . . . , tnsample

} ← Model([A]× nsample; θt)
7: {U1, U2, . . . , Unsample

} ← Detokenize({t1, t2, . . . , tnsample
})

8: {E1, E2, . . . , Ensample
} ← ComputeEnergy({U1, U2, . . . , Unsample

}, H)
9: wbest ← argmini{E1, E2, . . . , Ensample

}
10: L ← Loss(wbest)
11: θt+1 ← Update(θt)
12: if convergence criterion met at current max size then
13: max size← max size+ 1
14: end if
15: end while

Additional figures

Enlarged figures for the real device execution

The enlarged versions of Fig. 4c, displaying the results obtained from the real quantum device, are shown
in Fig. S3 for GQCO and Fig. S4 for QAOA.

Examples of generated circuits

In Fig. S5, we present examples of GQCO-generated circuits for each number of qubits.
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Figure S3: Sampling results on the real quantum device for the GQCO-generated circuit. (a) 1 shot, (b)
10 shots, (c) 100 shots, (d) 1000 shots, and (e) simulated state vector are displayed. The meanings of
the plots and histograms are the same as that of Fig. 4c.
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Figure S4: Sampling results on the real quantum device for the 2-layer QAOA circuit. (a) 1 shot, (b) 10
shots, (c) 100 shots, (d) 1000 shots, and (e) simulated state vector are displayed. The meanings of the
plots and histograms are the same as that of Fig. 4c.
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Figure S5: Examples of GQCO-generated quantum circuits.
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