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1 Supporting physics

The 14-7 potential due to Halgren [5] is given by

V14−7(rij) = ϵij

 1 + δij
rij
σij

+ δij

7  1 + γij
( rij
σij

)7 + γij
− 2

 (S1)

where σij is the position of the minimum, ϵij is the well depth at minimum, γij
and δij are dimensionless numbers that were originally shared for all elements.
However, in our previous work [11], we treated γ and δ as free atom-specific
parameters subject to optimization and combination rules. In Table S2, γ
and δ were treated as free parameters, but for trainings for model E and F in
Table 1 of the main text, γ was fixed at 0.12 and δ at 0.07 [5]. Although there
is no guarantee that these numbers are optimal, it is important to prevent
over-fitting in force field training to maintain generality (see Table S2 and
discussion about that in the main paper).

The Coulomb interaction can be described using Gaussian shielded charges [14,
6, 4]

Vcoul(rij) =
qiqjerf (ζijrij)

4πε0rij
, ζij =

ζiζj√
ζ2i + ζ2j

, (S2)

where ε0 is the permittivity of vacuum, qi,j are the charges and ζi,j are the
charge distribution widths (screening factors). The combination rule follows
mathematically from the Coulomb integral of two Gaussian-distributed den-
sities. The ACT also supports Slater-functions [4, 15] but those were not
used in this paper.
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2 Supporting tables

Table S1: Dimers used in evaluation of reproducibility of training algorithms
(Table S2). N is the number of conformations for each dimer.

Compound Compound N Data set
hydrogen fluoride hydrogen fluoride 375 Train
hydrogen-chloride hydrogen-chloride 328 Train
hydrogen-bromide hydrogen-bromide 311 Train
hydrogen-iodide hydrogen-iodide 273 Train
hydrogen-bromide hydrogen-chloride 158 Test
hydrogen-bromide hydrogen-fluoride 173 Test
hydrogen-iodide hydrogen-bromide 163 Test
hydrogen-iodide hydrogen-chloride 164 Test
hydrogen-iodide hydrogen-fluoride 166 Test

S4



Table S2: Reproducibility of algorithms for training two Van der Waals po-
tentials combined with (Gaussian) electrostatics, including a virtual site for
hydrogen halide dimers (Table S1). The number of parameters for the 12-6
potential was 85, for the 14-7 potential it was 107 since γ and δ were trained
as well. The training dataset consisted of four homodimers (1287 structures),
the test set of 10 heterodimers (824 structures). Root mean square deviation
of the total interaction energy is given (kJ/mol) after training on the ex-
change and dispersion energy components and the sum of electrostatics and
induction. Intramolecular interactions were excluded. The number of fitness
calculations was the same (44800 per training) for all three algorithms, but
scaled linearly with population size.

FF Population Dataset MCMC GA HYBRID
12-6[8] 64 Train 6.9 6.7 6.9

Test 7.6 5.2 8.1
128 Train 6.9 6.9 6.8

Test 7.5 7.4 7.5
256 Train 6.9 6.8 7.0

Test 7.5 6.7 7.6
512 Train 6.9 6.9 6.9

Test 7.5 7.6 7.6
14-7[5] 64 Train 2.7 3.3 2.9

Test 11.1 10.4 12.1
128 Train 2.7 3.3 2.8

Test 11.1 11.6 11.0
256 Train 2.7 3.0 2.6

Test 11.2 11.0 11.2
512 Train 2.6 2.9 2.6

Test 11.1 3.6 11.4
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Table S3: Dimers used in comparison of efficiency of training algorithms. N
is the number of conformations for each dimer.

Compound Compound N Data set
diethylene-glycol methanol 4 Train
2-propanol propane-13-diol 1 Train
1-propanol methanol 32 Train
methanol methanol 60 Train
2-propanol propane-12-diol 5 Train
2-propanol 2-propanol 6 Train
1-propanol ethanol 31 Train
water water 85 Train
2-propanol methanol 34 Train
methanol water 60 Train
1-propanol propane-12-diol 12 Train
2-propanol ethanol 33 Train
ethanol methanol 63 Train
1-propanol propane-13-diol 4 Train
ethanol ethanol 61 Train
water ethanol 60 Train
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Table S4: List of compound dimers used in training organic compounds and
validation in the condensed phase. Since part of the goal here was to exactly
reproduce OPLS2020 [10] energies, all dimers were part of the training set.
N is the number of conformations for each dimer.

Compound 1 Compound 2 N
ethane propane 30
ethanol ethanol 114
ethanol water 286
water water 484
1-propanol ethanol 60
water 1-propanol 109
water ethane 59
water propane 59
water butane 30
ethanol ethane 11
ethanol propane 60
ethanol butane 60
water 1-butanol 73
1-butanol ethane 11
1-butanol ethanol 30
1-propanol ethane 41
1-propanol propane 30
butane ethane 11
butane ethanol 30
butane propane 41
butane butane 76
ethane ethane 100
propane ethane 111
propane propane 111
ethanol butane 60
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Table S5: Atomic parameters for 1-propanol from OPLS2020 [10] and from
training using ACT. Charges q (e), Lennard-Jones paramters σ (nm) and ϵ
(kJ/mol). The parameters in this table completely describe n-alcohols and
n-alkanes in OPLS2020. HC is a hydrogen bound to an aliphatic carbon,
H1 is a hydrogen bound to a carbon with one electron-withdrawing group,
in this the alcohol oxygen, according to the definitions in GAFF [17] that
are adopted to some extent in ACT. Model AT has OPLS2020 atom types
and was trained to reproduce OPLS2020 energies, while model BT has ACT
(chemistry based, see Methods) atom types and was trained to reproduce
SAPT energies.

OPLS2020 types ACT types
Atom Param. type OPLS2020 AT type BT
C q 54 -0.12 -0.120147 c3 -0.052165

σ 0.355 0.354665 0.33651
ϵ 0.276144 0.280301 0.77848

C q 57 -0.18 -0.17988 c3 -0.0143792
σ 0.351 0.350411 see c3 above
ϵ 0.276144 0.282578

HC q 60 0.06 0.0600998 hc 0.00624663
σ 0.24 0.248409 0.264431
ϵ 0.108784 0.106474 0.0121607

O q 154 -0.683 -0.682998 o3 -0.640113
σ 0.312 0.312184 0.300369
ϵ 0.71128 0.704655 0.986232

H q 155 0.418 0.418248 ho 0.389719
σ 0.0 0.0 0.0964802
ϵ 0.0 0.0 0.40522

C q 157 0.145 0.144078 c3 0.222554
σ 0.350 0.349843 see c3 above
ϵ 0.276144 0.282107

H1 q 60 0.06 0.0600998 h1 0.00028925
σ 0.24 0.248409 0.251253
ϵ 0.108784 0.106474 0.0873522
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Table S6: Atomic parameters for a 4-point water model from TIP4P [9] and
from trainings using ACT. Charges q (e), Lennard-Jones paramters σ (nm),
ϵ (kJ/mol) and distance of virtual site from oxygen (nm). Model AT has
OPLS2020 atom types and was trained to reproduce OPLS2020 energies,
while model BT has ACT (chemistry based, see Methods) atom types and
was trained to reproduce SAPT energies.

OPLS2020 types ACT
Atom Param. type OPLS2020 AT type BT
O q 113 0 -0.0115616 ow 0.0140541

σ 0.315365 0.315292 0.305059
ϵ 0.648520 0.65046 0.905321

H q 114 0.52 0.520105 hw 0.549881
M q 115 -1.04 -1.02865 v3bw -1.11382

dOM 0.015 0.015192 0.02435091

Table S7: Root mean square deviation (kJ/mol) in energy components for
different force fields compared to the SAPT reference. A total of 2114 dimers
was included, see Table S4.

Model Exchange Dispersion Electrostatics Induction Total
OPLS2020 8.2 2.4 3.7 2.7 2.1
AT 8.2 2.4 3.7 2.7 2.1
AC 8.2 2.4 3.7 2.7 2.1
BT 8.7 2.3 4.3 2.7 1.2
BC 4.3 0.9 3.3 2.7 5.0
C 12.5 3.0 6.1 4.6 2.0
D 13.2 2.8 5.9 4.6 0.8
E 10.9 1.6 3.4 4.6 2.2
F 8.1 1.6 4.4 2.7 1.0
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Table S8: Density (g/L, with standard error due to Hess [7]) for ethanol-
water mixtures from experiment and molecular dynamics simulations. For
the OPLS2020 FF, simulations were performed using GROMACS [12], the
ACT-derived models were simulated using OpenMM [2]. The box sizes used
here are identical to earlier work by Wensink et al. [18]. Except where oth-
erwise mentioned (Table S10), simulations were performed at a temperature
of 298.15 K and a pressure of 1 bar. Bond-lengths were constrained to their
equilibrium value. Simulation lengths were 1000 ps using a time step of 1 fs.
The particle-mesh Ewald method [1, 3] was used to treat long-range electro-
static interactions.

# molecules OPLS ACT Model
ethanol water Experiment 2020 C D F
391 0 792.7 792.6 (0.7) 779.2 (0.0) 920.1 (0.0) 903.7 (0.0)
352 100 820.4 816.1 (0.8) 808.4 (0.0) 929.6 (0.0) 913.9 (0.0)
313 200 843.8 842.6 (1.0) 832.2 (0.0) 935.4 (0.0) 921.6 (0.0)
274 300 865.5 863.7 (1.3) 850.6 (0.0) 943.8 (0.0) 928.1 (0.0)
235 400 886.4 885.8 (1.3) 870.0 (0.0) 949.8 (0.0) 932.8 (0.0)
196 500 906.1 905.2 (1.8) 889.0 (0.0) 957.2 (0.0) 938.6 (0.0)
156 600 925.7 925.5 (0.7) 909.1 (0.0) 966.5 (0.0) 948.4 (0.0)
117 700 943.8 945.3 (0.9) 929.4 (0.0) 978.0 (0.0) 958.4 (0.0)
78 800 960.7 961.1 (1.7) 949.8 (0.0) 988.0 (0.0) 963.5 (0.0)
39 900 977.1 978.7 (0.9) 973.5 (0.0) 1001.5 (0.0) 975.5 (0.0)
0 1000 997.08 991.8 (1.0) 998.8 (0.0) 1017.8 (0.0) 995.9 (0.0)
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Table S9: Density (g/L with standard error due to Hess [7]) for 1-propanol-
water mixtures from experiment and molecular dynamics simulations. For
the OPLS2020 FF, simulations were performed using GROMACS [12], the
ACT-derived models were simulated using OpenMM [2]. The box sizes used
here are identical to earlier work by Wensink et al. [18]. See Table S8 for
simulation details.

# molecules OPLS ACT Model
1-propanol water Experiment 2020 C D F

300 0 803.73 803.2 (1.4) 794.9 (0.0) 935.5 (0.0) 922.7 (0.0)
270 100 826.70 824.3 (2.8) 817.3 (0.0) 940.3 (0.0) 926.0 (0.0)
240 200 847.53 845.0 (1.5) 837.5 (0.0) 947.2 (0.0) 932.0 (0.0)
210 300 867.93 865.6 (1.4) 855.5 (0.0) 952.7 (0.0) 936.9 (0.0)
180 400 888.37 881.1 (0.8) 875.3 (0.0) 958.4 (0.0) 943.3 (0.0)
150 500 908.77 904.2 (0.9) 893.4 (0.0) 966.5 (0.0) 947.2 (0.0)
120 600 929.60 921.4 (2.0) 913.8 (0.0) 972.9 (0.0) 956.0 (0.0)
90 700 950.30 940.2 (0.9) 932.7 (0.0) 982.3 (0.0) 964.2 (0.0)
60 800 969.63 959.6 (1.0) 954.8 (0.0) 991.9 (0.0) 969.1 (0.0)
30 900 985.07 979.1 (1.4) 975.3 (0.0) 1004.9 (0.0) 978.4 (0.0)
0 1000 997.08 991.8 (1.0) 998.8 (0.0) 1017.8 (0.0) 995.9 (0.0)
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Table S10: Density (g/L with standard error due to Hess [7]) of alkanes from
liquid simulations using the OPLS2020 model [10], simulated using GRO-
MACS [12] and models derived in this work, simulated using OpenMM [2].
For simulation details see Table S8.

OPLS ACT Model
Compound N T (K) Exper. 2020 C D F
methane 1000 100 438 471.6 (1.7) 459.5 (0.0) 513.1 (0.0) 457.2 (0.0)
ethane 500 150 577 587.6 (1.3) 576.9 (0.0) 658.3 (0.0) 630.2 (0.0)
propane 333 200 620 575.2 (2.4) 609.3 (0.0) 710.3 (0.0) 689.2 (0.0)
butane 250 250 626 622.6 (2.5) 616.8 (0.0) 724.3 (0.0) 701.8 (0.0)
isobutane 250 250 607 626.9 (4.1) 614.6 (0.0) 729.2 (0.0) 705.6 (0.0)
cyclopentane 200 298.15 750 721.4 (0.9) 699.8 (0.0) 845.3 (0.0) 858.7 (0.0)
pentane 200 298.15 621 611.5 (2.7) 605.3 (0.0) 720.6 (0.0) 693.3 (0.0)
neopentane 200 298.15 586 605.6 (3.7) 609.7 (0.0) 737.1 (0.0) 713.2 (0.0)
cyclohexane 166 298.15 773 761.3 (1.4) 760.3 (0.0) 904.9 (0.0) 887.5 (0.0)
hexane 166 298.15 656 643.2 (1.7) 651.3 (0.0) 760.6 (0.0) 732.8 (0.0)
octane 125 298.15 699 700.8 (1.6) 709.3 (0.0) 811.7 (0.0) 780.7 (0.0)
RMSD 23 20 108 87
MSE -3 -4 51 94
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Table S11: Density (g/L) of alkali halides from simulations starting from the
crystal state at 298.15 K. The reference data were taken directly from the pa-
per by Walz et al. [16]. Those simulations were performed using GROMACS
4.6.7 [13] using self-consistent optimization (SCF) of drude positions at each
time step in the simulations. Here, we performed simulations of 500 ps using
OpenMM [2] on a NVIDIA GPU with the same integration algorithm. N
denotes the number of ion-pairs in the crystal.

Salt N Exper. Walz [16] This work
LiF 500 2638 2638 2653
LiCl 500 2076 2075 2079
LiBr 500 3465 3466 3467
LiI 500 4069 4070 4050
NaF 500 2803 2803 2825
NaCl 500 2166 2167 2182
NaBr 500 3201 3202 3207
NaI 500 3671 3667 3667
KF 500 2524 2524 2534
KCl 500 1988 1990 2003
KBr 500 2749 2746 2763
KI 500 3125 3124 3137
RbF 500 3844 3844 3878
RbCl 500 2820 2819 2837
RbBr 500 3360 3361 3369
RbI 500 3565 3558 3558
CsF 500 4638 4640 4668
CsCl 512 3990 3987 4023
CsBr 512 4460 4461 4464
CsI 512 4526 4530 4549
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3 Parallel implementation and scaling

3.1 Parallel work flow

Fig. S1 shows the parallelization scheme for the training code in the ACT.

Master

Gene pool

Middleman 1


Genome 1

Middleman 2


Genome 2

Middleman N


Genome N

Helper 1

Molecules

Genomes

Genome

Fitness χ2

Helper 1

Molecules

Genome

Fitness χ2

Helper 1

Molecules

Genome

Fitness χ2

Helper 2
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Helper M

Molecules

Helper 2

Molecules

Helper M

Molecules

Helper 2

Molecules

Helper M

Molecules

Cross-Over 
Elitism 

Fitness Sorting
Fitness χ2 

Figure S1: Schematic showing the parallellization and flow of infor-
mation in force field optimization in the ACT. The master process
hands out genomes from the gene pool to all the middlemen. Those in turn
perform fitness calculations and local optimization using Monte Carlo. If
needed, helper processes can be used to speed up the calculation. The com-
munication between middleman and helper is local only to reduce overhead.
The master process receives the fitness and the mutated genomes from the
middleman, sorts them and performs cross-over to produce offspring.

3.2 Strong scaling

Strong scaling is evaluated by increasing the number of cores for a given
problem and can be computed as

Ss = 100× 128t128
ntn

(S3)
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with n representing the number of cores, 128 being the reference, and tn the
run time. Fig. S1 depicts the parallellization scheme used in the ACT, con-
sisting of three layers: a master process controlling the middlemen which act
as individuals in the population and helpers for the middlemen. When the
MCMC algorithm is used there is no communication between middlemen.
However, with increasing number of cores, the compounds are divided over
helper nodes necessitating local communication. Doubling the number of
cores for MCMC improves the throughput (Ss > 1, Fig. 2B in main article)
which is typically due to better usage of cache memory. Until three helpers
per middleman (512 cores) scaling Ss remains close to one. For the other two
methods, global communication is involved at each generation in the genetic
algorithm and performance decreases quite rapidly. It could be expected
that the performance of the HYBRID algorithm would be in-between the
other two since there is much less communication than in the GA algorithm.
Perhaps the very small size of the training set exaggerates the cost of com-
munication. Running a short evaluation like this before full-scale force field
training may aid in optimizing resource usage.

3.3 Weak scaling

Weak scaling, that is the change of CPU time with increasing calculation
load, was evaluated for the training of an alcohol force field (Table S12). For
both HYBRID and MCMC increasing the number of fitness evaluations by a
factor of four reduces the efficiency by 5% only. For the pure GA algorithm
there is more communication, and performances falls by 11% (Table S12).
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Table S12: Performance statistics for different algorithms. Timing and weak
scaling (compute effort proportional to number of cores) are given as well as
the final fitness χ2 (lower is better). Benchmark system is given in Table S4,
there were 41 parameters to train. Training was set up such that all algo-
rithms did the same amount of energy calculations. Scaling is defined in the
main text. Calculations were run on a Cray where each node had two AMD
EPYC 7742 64-core processors.
Algorithm Population #Generations #MCMC Time (s) S (%) χ2

GA 128 32800 - 3489 100 38.8
256 32800 - 3635 96 29.5
384 32800 - 3761 93 32.8
512 32800 - 3925 89 37.8

MCMC 128 1 800 3376 100 29.5
256 1 800 3435 98 29.4
384 1 800 3516 96 29.5
512 1 800 3566 95 29.5

HYBRID 128 20 40 3402 100 29.5
256 20 40 3434 99 29.4
384 20 40 3586 95 29.5
512 20 40 3562 96 29.4
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