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S1 Neural Network Overview
The Linear layer is the basic building block of all neural networks.
It applies a linear function to the data by taking an input vector
x → Rnin and transforming it into an output vector y → Rnout by
means of a weight matrix W and bias vector b,

y = Wx+b. (S1)

Since a Linear layer can only model linear transformations, for
modeling non-linear relationships, one can apply a non-linear ac-
tivation function !(·) to the linear equation,

y = !(Wx+b). (S2)

Non-linear activation functions aid a model in creating complex
mappings between the network’s inputs and outputs. There are
many non-linear activation functions to choose from, each best
for different types of problems, but some popular functions in-
clude ReLU, Sigmoid, and Hyperbolic Tangent. With these com-
ponents, one can build increasingly intricate neural networks by
composing a number of transformations.

Graph Convolutional Network A graph convolutional net-
work (GCN)42 is a type of graph neural network, a neural net-
work architecture for performing machine learning on graph-
structured data.

Forward Pass During the forward pass of GCN training, as
the data propagates through the layers of the network, the input
features are transformed via a convolution step. In this step, the
convolutional layers apply trainable weights to the node features
and update the feature representation of each node as an aggre-
gate of its neighboring features. The layer-wise propagation rule
for a general GCN is described by42

H(l+1) = !(D̃↑ 1
2 ÃD̃↑ 1

2 H(l)W (l)). (S3)

Here Ã = A+ In refers to the adjacency matrix of the undirected
input graph, including self-loops. In is an identity matrix of di-
mension n, where n is the number of nodes in the graph. The
diagonal degree matrix D̃ has elements D̃ii = ! j Ãi j. The matrix
H(l) → Rn x k is the output from the lth layer of the network, where
k is the number of features in the data. We initialize H(0) = X , the
input matrix of node feature vectors. The matrix W (l) is a layer-
specific trainable weight matrix, and !(·) denotes the activation
function.

Following convolution, the neural network applies a readout

operation, such as a fully connected Linear layer, to transform the
intermediate node representations into the output predictions.
The loss function quantifies the distance between the predicted
and target values, resulting in a loss score. This loss score is the
objective function the network seeks to minimize during the back-
ward pass.

Backward Pass To minimize the loss score, following ev-
ery forward pass through the network, there is a backward pass,
where the gradient of the loss score is computed with respect to
the network parameters. Subsequently, the optimizer uses the
direction of the gradients to update the weight and bias parame-
ters to produce a better loss score in subsequent forward passes.
The forward and backward passes repeat iteratively, for all train-
ing epochs to follow, until training is complete, as determined
by some stopping criterion. Due to memory limitations on the
GPUs used for computation, during training, the data are typi-
cally partitioned into mini-batches, and forward and backward
computations are performed on one mini-batch of data at a time.

S2 Quadrupole and Octupole Multipole Moment
Tensor Detracing Procedure

The full representation of each atomic quadrupole moment is
a symmetric two-dimensional tensor of size 3!3. Prior to PIL-
Net model training, to obtain the representation used by the PIL-
Net model, we detraced the QM Dataset for Atomic Multipoles5

(QMDFAM) atomic quadrupole moment tensors using the proce-
dure described by the dataset curators.

D̂∀## = ∀## ↑ 1
3 !

∃
∀∃∃ , (S4)

where D̂ is the detracing operator, ∀ is a quadrupole tensor, and
the Greek indices run over the three Cartesian dimensions x, y
and z. This procedure ensures the quadrupole tensor is traceless,
i.e. (∀xx + ∀yy + ∀zz) = 0.

Similarly, the full representation of each octupole moment is
a symmetric three-dimensional tensor of size 3!3!3. Prior to
model training, we detraced the octupole moment tensors using
an equation that arises from the Cartesian tensor definition of the
octupole multipole moment2

D̂∀#∃∃ = ∀#∃∃ ↑ 1
3 !

%
∀#%% , (S5)

where D̂ is the detracing operator, ∀ is an octupole tensor, and
the Greek indices run over the three Cartesian dimensions x,
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Fig. S1 Rendering of a molecule with chemical formula
C10H4ClF3N4O from the QM Dataset for Atomic Multipoles 5,
using the RDKit software package. 51

Fig. S2 Distribution of multipole moment values in the QMD-
FAM5 training set. Each plot contains all the scalar values from
each multipole moment vector, not the magnitude of the vector.
Since the length of the vector for each multipole property can
di!er (e.g., 3 for dipole and 10 for octupole), this accounts for
the di!erence in the frequency counts of the histograms.

y and z. This procedure ensures the octupole tensor is trace-
less, i.e. (∀xxx + ∀xyy + ∀xzz) = (∀xxy + ∀yyy + ∀yzz) =
(∀xxz + ∀yyz + ∀zzz) = 0. (The equivalent sums due to symmetry
also hold.)

Subsequently, since both the quadrupole and octupole ten-
sors are symmetric, each of their representations can be flat-
tened to form a vector that only includes its unique com-

ponents. As a result, the atomic quadrupole and oc-
tupole moments are transformed into vectors of length 6
and 10, respectively. The quadrupole vector is defined as
Q := [∀xx,∀xy,∀xz,∀yy,∀yz,∀zz], and the octupole vector is defined
as O := [∀xxx,∀xxy,∀xxz,∀xyy,∀xyz,∀xzz,∀yyy,∀yyz,∀yzz,∀zzz]. This
is the representation the atomic quadrupole and octupole mo-
ment tensors have in the QMDFAM, and it is a common way to
represent these properties. Therefore, when performing the de-

tracing operations, instead of applying Equations S4 and S5 to
the ∀ and ∀ tensors, we applied them to the corresponding ele-
ments in the Q and O vectors.

S3 Additional QM Dataset for Atomic Multipoles
(QMDFAM) Information

Figure S1 displays a rendering of a molecule from the QMDFAM5.
Table S1 provides additional counts and statistical details about
the atoms and molecules in the QMDFAM. Figure S2 and S3 visu-
alize the distribution of dataset values as histograms.

QM Dataset for Atomic Multipoles
Molecular Conformations 1,013,891

Molecular Conformers 311,781
Atoms 28,609,654 / 15,241,043

Hydrogen 13,368,611
Carbon 10,899,843

Nitrogen 1,967,127
Oxygen 1,737,093
Fluorine 210,429
Sulfur 265,680

Chlorine 160,871
Min Atoms per Molecule 2 / 1
Max Atoms per Molecule 60 / 20

Mean Atoms per Molecule 29.63 / 16.16
Stdev Atoms per Molecule 4.86 / 1.90

Table S1 Further details about the QM Dataset for Atomic Multi-
poles. 5 This information includes the count of molecular confor-
mations and conformers in the dataset, as well as the total atom
count, broken down by element. Additionally, the table lists distri-
bution information related to the size of molecules in the dataset.
In each row with two numbers, the first number includes all atoms
present in the dataset and the second number only includes the
heavy atoms (excludes hydrogen).

S4 Additional PIL-Net Model Training Details
Hyperparameter Tuning To decide the neural network depth
(number of stacked modules / convolutional layers) and width
(number of hidden neurons per layer), we formed an 80/20
train/test split on the training set. Then, we trained a PIL-Net
model for 25 epochs over the new training split and obtained the
predictive results on the new test split. We trained a separate
model for each tuned hyperparameter. The neural network depth
was trained over the values {3, 4, 5} and neural network width
over the values {64, 128, 256}. We found the values 5 and 256,
respectively, to result in the best performance, when considering
both predictive error and training time.

Training Procedure The weight and bias network parameters
for the PIL-Net model were initialized with random values from a
uniform distribution between -

↓
k and

↓
k, where k is the size of
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Fig. S3 Distribution of the sum of atomic monopole moment
values within each molecule in the QM Dataset for Atomic Mul-
tipoles 5 training set.

the input sample, as defined by PyTorch’s Linear function.53 All
models were trained using the Adam optimizer with a mini-batch
size of 256.

As in the QM Dataset for Atomic Multipoles paper,5 PIL-Net
uses a single model to train over all the multipole target prop-
erties, but uses separate model weights for each property, which
are updated using separate optimizers. This is due to a slight re-
duction in predictive error compared with a single shared set of
weights and optimizer during initial experiments. The PIL-Net
loss function (defined in Equation 7) scales the multipole prop-
erties to have a similar range. In the future, if we convert all
the atomic multipoles to have the same scale prior to training, we
might be able to share some of the weights across target proper-
ties, which would reduce training time.

At the beginning of training, the learning rate starts at 1E-3.
To prevent overfitting, PIL-Net uses the PyTorch53

ReduceLROn-

Plateau learning rate scheduler. We set the function arguments so
that the learning rate is reduced by a factor of 0.5 if the validation
loss plateaus (there is less than a 1E-4 reduction in relative loss)
for more than five epochs, until the loss reaches 1E-5. For timing
considerations, all computations were performed in single preci-
sion. The QMDFAM paper5 identified that using double precision
did not improve the predictive results significantly.

S5 Model Evaluation Metrics
Mean Absolute Error (MAE) is defined as the absolute difference
between the predicted and target values and provides insight into
the magnitude of the error

MAE(X,Y) =
1

nd

n

!
i=1

d

!
j=1

|Yi, j ↑Xi, j|, (S6)

where n is the number of rows which comprise the X and Y matri-
ces and d is the number of columns (e.g., 16 and 3, respectively,
for the matrices corresponding to the atomic dipole moments of
a molecule with sixteen atoms).

Coefficient of Determination (R2) is a measure of the
goodness-of-fit of the model. This value indicates how much the
variability of the reference values from their mean is explained by
the model and is defined as

R2(X,Y) = 1↑
!n

i=1 !d
j=1(Yi, j ↑Xi, j)2

!n
i=1 !d

j=1(Xi, j ↑ X̄ j)2
, X̄ =

1
n

n

!
i=1

Xi, (S7)

where n is the number of rows that comprise the X (reference)
and Y (prediction) matrices, d is the number of columns, and X̄ is
the mean of X.

Root Mean Squared Deviation (RMSD) is defined as the
square root of the mean squared difference between the predicted
and target values and is defined as

RMSD(X,Y) =

√√√√ 1
nd

n

!
i=1

d

!
j=1

(Yi, j ↑Xi, j)2, (S8)

where n is the number of rows which comprise the X and Y ma-
trices and d is the number of columns.

Pearson Correlation Coefficient (PCC) measures the linear
correlation between the predicted and target values as

PCC(X,Y) =
!n

i=1 !d
j=1(Xi, j ↑ X̄ j)(Yi, j ↑ Ȳj)√

[!n
i=1 !d

j=1(Xi, j ↑ X̄ j)2][!n
i=1 !d

j=1(Yi, j ↑ Ȳj)2]
,

X̄ =
1
n

n

!
i=1

Xi, Ȳ =
1
n

n

!
i=1

Yi,

(S9)
where n is the number of rows which comprise the X and Y ma-
trices and d is the number of columns.

S6 Additional Results Comparison between PIL-Net
and AIMNet

Table S2 compares the root mean squared deviation (RMSD) for
the atomic dipole and quadrupole properties for the PIL-Net and
AIMNet models.
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Method Train +
Valid

Test Elements RMSD µ
(eÅ)

RMSD ∀
(eÅ2)

Train Time
(hours)

PIL-Net 1M 13K CHONFSCl 3.1 E-3 2.0 E-3 21
*AIMNet10 9M 156K CHONFSCl 5.4 E-3 1.27 E-2 270

Table S2 Root Mean Squared Deviation (RMSD) results for PIL-
Net and AIMNet atomic dipole and quadrupole moment predic-
tions. Section 1 and Methods subsection 2.4 provide further in-
formation about AIMNet. The symbols µ and ∀ correspond to
atomic dipole and atomic quadrupole, respectively. For both mod-
els, the training time includes training over additional properties
as well. Section 3, the Results section, includes further detail.
The precision to which the AIMNet error is written reflects the
precision reported in the corresponding paper. The current work’s
results are displayed in boldface. The standard deviation of PIL-
Net’s prediction error for the atomic dipole and atomic quadrupole
properties was 6E-5 and 1E-5, respectively. *AIMNet’s atomic
dipole and quadrupole dataset values are given as norms of vec-
tors, as opposed to full vector representations.

PIL-Net outperforms AIMNet in RMSD on the atomic dipole and
quadrupole properties, particularly on the latter property. Since
AIMNet used a dataset that provided the norm of the atomic
dipole and quadrupole vectors, as opposed to the vectors them-
selves, PIL-Net’s results are made more impressive, as PIL-Net is
solving a more difficult computational problem.

S7 Monopole Total Charge Constraint Implementa-
tion Experiment

To examine the impact of employing a “soft” monopole total
charge constraint in PIL-Net, where the forced redistribution of
charge only occurs if the total charge within a molecule exceeds
10↑2 e, we trained an additional PIL-Net model that employed a
“hard” monopole total charge constraint. The latter model always

redistributed the charge so that the sum of the atomic monopole
predictions equaled exactly zero for all molecules in the training
set. In the original PIL-Net models, where we only redistributed
the charge if the total charge exceeded 10↑2 e, the resulting test
set mean absolute error (MAE) was 7.4 E-3 (± 5E-5) e for the
atomic monopole moment property (shown in Table 2), which
resulted in test set MAE 6.59 E-2 (± 6E-4) eÅ for the molecu-
lar dipole moment property (shown in Table 6). For the new
PIL-Net model that implemented a hard constraint, the resulting
test set error was 7.5 E-3 e for the atomic monopole moment
property, a slightly larger error than in the original models. Fol-
lowing the application of Equation 9, this error led to test set
MAE 6.71 E-2 eÅ for the molecular dipole moment property. As
such, the molecular dipole moment error originating from the
10↑2 e soft constraint was slightly smaller than the error due to
the hard constraint. The current PIL-Net implementation of the
monopole total charge constraint is justified due to the distribu-
tion of the QMDFAM dataset5 (displayed in Figure S3), where
the total charge does not equal zero across all the molecules. For
other datasets, depending on their distributions, it may be more
appropriate to implement this constraint as a hard constraint, or
to use a different numerical bound for the soft constraint.

S8 Computed Uncertainty in Molecular Dipole Mo-
ment Approximation Equation

PIL-Net uses Equation 9 to approximate molecular dipole mo-
ments as a function of its atomic multipole predictions. Not only

do the atomic multipole moment predictions have associated un-
certainty, but Equation 9 itself does as well, since it is simply a
model. The mean absolute error (MAE) of the molecular dipole
moment predictions relates to the uncertainty in the input values
and the uncertainty in the model as

MAEdipole ↔ #out put ↗
√

#2
input +#2

model , (S10)

where # denotes uncertainty. Equation S10 lowerbounds the
value of #out put because of the potential presence of other uncer-
tainties that contribute to the overall output uncertainty, such as
numerical error.

From Table 6, the uncertainty in the Equation 9 output
is #out put ↔ MAEdipole = 0.0659 eÅ. From Table 2, the un-
certainty in the Equation 9 input variables (per atom) is√

0.00202 +(|↑0.0467|↘0.0074)2 = 0.0020 eÅ, given the PIL-Net
atomic monopole error 0.0074 e, atomic dipole error 0.0020 eÅ,
and the average value of an atomic coordinate in the QMDFAM
test set5 -0.0467 eÅ. The average number of atoms in a QMDFAM
test set molecule is 32.52, so the average uncertainty in the Equa-
tion 9 input variables (per molecule) is #input= (32.52)(0.0020)
= 0.0650 eÅ. Consequently, #model ≃ 0.0109 eÅ.

These results indicate that Equation 9 is a good model for
molecular dipole moment prediction. Most of the error in the
output of the equation is accounted for by the error in the in-
put variables. Reducing the uncertainty in the predicted atomic
monopoles and dipoles should reduce the overall molecular
dipole moment approximation error by a large amount. If we
set #input = 0, we would expect #out put ↔ 0.0109 eÅ. However, we
applied Equation 9 to the reference atomic monopole and dipole
moments from the QMDFAM dataset5 (#input ↔ 0) empirically, in-
stead of the predicted values, which resulted in much lower MAE
than the theoretical value. The MAE was 0.0001 eÅ, demonstrat-
ing the utility of the model experimentally. Perhaps removing the
uncertainty from the inputs also reduced numerical error, which
could account for the difference in the theoretical and empirical
#out put calculations.

S9 Approximation of Higher-Order Molecular Mul-
tipole Moments

In this subsection, we describe the process of approximating
molecular quadrupole and octupole multipole moments from PIL-
Net atomic monopole predictions, as well as using the PSI4 pack-
age63 to compute the corresponding molecular moment reference
values. Finally, we compare the approximate and reference values
and report the error.

Approximation Equations Following PIL-Net model training,
we used the quadrupole and octupole moment operators to ap-
proximate the corresponding higher-order molecular multipole
moments with minimal additional cost. These operators are de-
fined as a function of their respective atomic monopole moments
and the given atomic position information. As these are opera-
tors, to obtain the molecular quadrupole and octupole moments
in a particular quantum state |n⇐, one would need to take the

S4



MAE R2

Quadrupole Moment Approx. 8.25 E-1 eÅ2 (± 8E-3) 0.5070 (± 1E-2)
Octupole Moment Approx. 5.90 eÅ3 (± 6E-2) -0.8047 (± 4E-2)

Table S3 The resulting Mean Absolute Error (MAE) and Coef-
ficient of Determination (R2) from approximating the molecular
quadrupole and octupole moments using Equations S11 and S12,
as well as the corresponding standard deviations.

expectation over the operators2, which would lead to their re-
spective definitions in Equation 2.

The molecular quadrupole moment operator is defined as2

∀̂#∃ = !
i

qi(
3
2

ri#ri∃ ↑ 1
2

r2
i &#∃ ), (S11)

where ∀̂ is the quadrupole operator, i iterates over all the atoms
belonging to the corresponding molecule, r is a Cartesian atomic
position vector, r2 denotes a dot product, & is the Kronecker delta,
and the Greek indices run over the three Cartesian dimensions x,
y and z. This equation leads to a full two-dimensional symmetric
representation of a size 3!3 quadrupole moment tensor. We com-
puted Equation S11 only for the quadrupole tensor entries that
form the unique components of the corresponding quadrupole
vector. The mapping between quadrupole tensor and quadrupole
vector is detailed in Supplementary Information Section S2.

The molecular octupole moment operator is defined as2

∀̂#∃% = !
i

qi(
5
2

ri#ri∃ ri% ↑
1
2

r2
i (ri# &∃% + ri∃ &#% + ri% &#∃ )), (S12)

where ∀̂ is the octupole operator, i iterates over all the atoms
belonging to the corresponding molecule, r is a Cartesian atomic
position vector, r2 denotes a dot product, & is the Kronecker delta,
and the Greek indices run over the three Cartesian dimensions x,
y and z. This equation leads to a full three-dimensional symmet-
ric representation of a size 3!3!3 octupole moment tensor. We
computed Equation S12 only for the octupole tensor entries that
form the unique components of the corresponding octupole vec-
tor. The mapping between octupole tensor and octupole vector is
detailed in Supplementary Information Section S2.

Reference Multipole Computation Since the QM Dataset
for Atomic Multipoles (QMDFAM)5 does not provide reference
molecular quadrupole and molecular octupole multipole mo-
ments, we chose 50 molecules uniformly at random from our
test set for which to generate the moments. Adapting the codes
from the QMDFAM paper for computing the reference multipole
moments, we computed the MBIS-derived molecular quadrupole
and octupole moments for these molecules using the PSI4 pack-
age63 at the PBE0/def2-TZVP level of theory. This PSI4 code took
3.2 hours to run for 50 molecules, or 3.9 minutes per molecule,
on an Intel Xeon processor.59 After detracing these reference val-
ues using the procedure described in Supplementary Information
Section S2, the molecular quadrupole moment values occurred
in range [-4.61 eÅ2, 5.30 eÅ2]. For the molecular octupole mo-
ments, the range was much wider, at [-40.83 eÅ3, 42.83 eÅ3],

perhaps due to the effect of large asymmetries in the global
charge distribution.

Predictive Results Table S3 displays the mean absolute error
(MAE) and coefficient of determination (R2) results, comparing
the molecular quadrupole and octupole multipole moments ap-
proximated using Equations S11 and S12 and the corresponding
reference values computed using the PSI4 package63.

Looking at the molecular quadrupole moment error, while the
MAE is large, the coefficient of determination, at 51%, indicates
a moderate correlation between the predicted and reference val-
ues, a promising result. Contrastingly, for the molecular octupole
moment, the R2 value indicates there is no positive correlation
between the predicted and reference values. Taken together,
these results indicate that using the molecular quadrupole and
octupole operators by themselves as approximation equations is
not enough to yield excellent results.

As such, the equations will need to be modified to produce
better results, while still being simple to compute. However,
the two equations are good starting points. With some added
complexity, they might be improved. For example, perhaps
the molecular quadrupole moment equation can incorporate the
atomic quadrupole predictions and the molecular octupole mo-
ment equation can incorporate the atomic octupole predictions,
following a similar pattern as Equation 9. Another factor to
consider is that the reference atomic monopole moments were
computed at the PBE0-D3BJ/def2-TZVP level of theory, which in-
cludes the D3BJ dispersion correction method. The difference
in the DFT level of theory used to compute the reference atomic
multipole moments and the reference molecular quadrupole and
octupole moments could account for some of the error in these
approximations.

It takes a fraction of a second per molecule to compute Equa-
tion S11 and Equation S12, as opposed to 3.9 minutes per
molecule when computing the reference values using the PSI4
package63, adding to the appeal of using the former method as a
starting point for obtaining the multipole moment values. While
the former computations were run on a GPU and the latter a CPU,
the performance gap is still evident. Currently, running the PSI4
library63 with a GPU requires the use of external licensed soft-
ware.

S10 Progression of PIL-Net Validation Loss During
Training

Figure S4 depicts the average PIL-Net unweighted validation loss
during training. PIL-Net has reasonable validation loss even from
its first epoch of training. Then, from its initial set of predictions,
the training procedure reduces the validation loss further by a
factor of 4 for the atomic monopoles and by nearly an order of
magnitude for the other atomic multipole moments, by the end
of training. Moreover, the validation loss slope begins to flatten
starting around epoch 100, indicating that training could have
stopped earlier with minimal effect on error, which would be par-
ticularly beneficial in time-constrained scenarios.
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Fig. S4 Validation loss over the course of PIL-Net model training
for each of the atomic multipole moment properties.

S11 Scaling Study: E!ect of Training Set Size on
Predictive Results

Figure S5 (mean absolute error) and S6 (coefficient of deter-
mination) present learning curve plots for each atomic multi-
pole moment property. In these experiments, the same train-
ing/validation/test set used in the main experiments was main-
tained, except that the training set was sampled uniformly at
random to reduce the training set to the sizes listed along the
x-axis of the figures. PIL-Net models were trained using a train-
ing set of each size, and the resulting test set MAE and R2 values
are displayed in these figures. Across all these experiments, the
PIL-Net architecture and hyperparameters were kept the same as
in the original experiments that used the 900K training set size.
The training set sizes were chosen to match those of DynamPol8,
#-ML-8511, CMPNN9, and EGNN5. The predictive results from
these models (listed in Tables 2 and 5) were used for compar-
ison with PIL-Net. PIL-Net’s original training set size (900K) is
the largest depicted in Figures S5 and S6. The AIMNet model’s10

training set size (9M) was omitted in these experiments because
it is larger than the size of the entire QM Dataset for Atomic Mul-
tipoles (QMDFAM)5. An additional training set size (400K) was
incorporated to split the difference between the two neighboring
training set sizes.

As shown in Figure S5, the test set error decreases as training
set size increases, as expected. Figure S6 indicates the test set
R2 increases as the training set size increases, also as expected.
Interestingly, both the MAE and R2 values begin to level around

the 400K training set size, suggesting that using a smaller QMD-
FAM training set size could yield similar predictive results as the
original 900K training set size, leading to less training time and
memory usage.

Furthermore, there is additional overfitting present in the PIL-
Net models trained on the smaller training subsets compared to
the original training set because the PIL-Net hyperparameters
(e.g., number of layers and hidden neurons) were tuned using
the original 900K training set size. Tuning these hyperparame-
ters with the smaller subset sizes should reduce overfitting in the
model and further improve the MAE and R2 results. Even so,
while using their respective training set sizes, PIL-Net still outper-
formed the majority of the models it matched or beat in Tables 2
and 5 in terms of MAE and R2. The only exceptions are CMPNN in
MAE for the atomic dipole moment property and DynamPol in R2

for the atomic dipole and quadrupole moment properties. These
results illustrate that PIL-Net’s strong performance is not solely
attributable to the volume of data on which it was trained.

S12 ANI-1x Out-of-Domain Dataset Experiment
ANI-1x Dataset In this out-of-domain experiment, we demon-
strate the transferability of the PIL-Net model. We used the PIL-
Net models (PINN version) we trained on the QM Dataset for
Atomic Multipoles (QMDFAM)5 to make atomic multipole mo-
ment predictions on molecules from the ANI-1x dataset,10,20,48,49

Fig. S5 Mean Absolute Error (MAE) resulting from PIL-Net
models trained using di!erent training set sizes.
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Fig. S6 Coe"cient of Determination (R2) resulting from PIL-Net
models trained using di!erent training set sizes.

and present the results. The ANI-1x dataset is a non-equilibrium
dataset of 4.6M molecular conformations originating from 2.4K
conformers. The ANI-1x molecules are composed of elements H,
C, N, and O with mean molecule size 15.16 ± 6.07 atoms. The
dataset includes nuclear charge and Cartesian coordinate data.

We applied the feature extraction process described in Methods
subsection 2.2.2 to obtain the same set of features for the ANI-
1x dataset. Since this dataset does not include SMILES strings
for its molecules, we used the RDKit software package51 to infer
the molecules based on the provided dataset feature information.
We ensured that even though ANI-1x has fewer elements than
QMDFAM, the one-hot encoding on the ANI-1x nuclear charges
matched that of QMDFAM in length and positioning. Further-
more, we normalized the interatomic distance feature in accor-
dance with the training set mean and standard deviation we com-
puted for the QM Dataset for Atomic Multipoles. The ANI-1x
dataset includes label information related to several atomic mul-
tipole moment properties, computed using a variety of methods.
As the ANI-1x dataset does not include atomic monopole labels,
in this experiment, we compared our predictions to the dataset’s
MBIS atomic dipole, quadrupole, and octupole moment proper-
ties. Unlike the QMDFAM, the ANI-1x dataset reports the magni-

tude of the vector corresponding to each property instead of the
vector itself. As such, during inference, once PIL-Net provided its
atomic multipole predictions on the ANI-1x dataset, we computed

the magnitude of the vectors in order to compare the results with
the reference values included in the ANI-1x dataset.

Atomic Multipole MAE PCC
Dipole (µ) 4.29 E-2 (± 6E-4) eÅ 0.6943 (± 9E-3)

Quadrupole (∀) 1.06 E-1 (± 2E-3) eÅ2 0.2458 (± 2E-1)
Octupole (∀) 4.78 E-1 (± 9E-4) eÅ3 0.7772 (± 4E-2)

Table S4 Mean Absolute Error (MAE) and Pearson Correlation
Coe"cient (PCC) results for the PIL-Net model applied to the
ANI-1x dataset, 10,20,48,49 following training on the QM Dataset
for Atomic Multipoles. 5

Predictive Results In Table S4, we report our PIL-Net results
from training on the QMDFAM and performing inference on ANI-
1x. Comparing these results to those in Table 2, we can observe
that even when predicting on a dataset from a different distribu-
tion than our training set, all the PIL-Net predictions have less
error than that of #-ML-8511, one of the related works. However,
one must take into account that the prediction problem is simpler
because these PIL-Net results are a function of norms of atomic
multipole vectors (as provided by the ANI-1x dataset), not the
vectors themselves. To perform further comparison of our results
with those of #-ML-85, we also report the Pearson correlation co-
efficient (PCC) of our results. The PIL-Net PCC values indicate
that our predictions are well-correlated with the ANI-1x dataset
values for the atomic dipole and atomic octupole moment prop-
erties. Comparing with the reported #-ML-8511 PCC values in
Table 5, we can see that PIL-Net outperformed #-ML-85 in corre-
lation for the atomic dipole property. (The #-ML-85 paper does
not report results for the atomic octupole property.)

While the atomic quadrupole out-of-domain PCC result indi-
cates low correlation between the predicted and reference val-
ues, the corresponding standard deviation is large at 2E-1. If
we averaged these results over additional trained PIL-Net mod-
els, the PCC for the atomic quadrupole property might improve.
Moreover, ANI-1x is a non-equilibrium dataset, meaning that it
contains some charged molecules, and an assumption behind our
monopole total charge constraint is that the molecules are neu-
tral. To that effect, these results also point to the robustness of the
PIL-Net model. In future models, making our constraints more
general should only serve to improve our results further.

Therefore, we have shown that PIL-Net performs well in an out-
of-domain setting. Our model not only excels at predicting multi-
pole moments similar to those on which it has been trained, but it
is also transferable to datasets from outside distributions. Train-
ing the PIL-Net model for a limited number of additional epochs,
specifically on the out-of-domain dataset, may yield further im-
provements in the error and correlation with the out-of-domain
reference values.

S13 Additional Electrostatic Potential Reconstruc-
tion Information

In addition to multipole moments and atomic coordinate data,
the QM Dataset for Atomic Multipoles (QMDFAM)5 also provides
coordinates along the van der Waals (vdW) surface of the test set
molecules (length 3 vector), as well as the corresponding electro-
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static potential (ESP), computed at each vdW grid point (scalar
value). These ESP values comprise the reference values we use for
comparison with our reconstructed ESP values. To obtain the ESP
on a molecular surface with a distance of two vdW radii around
each molecule, the electron densities were computed from den-
sity functional theory calculations at the PBE0-D3BJ/def2-TZVP
level of theory.5 The vdW surfaces are reported in the QMDFAM
in Angstrom, and the ESP values are reported in Hartree. Note
that two molecules that appeared in the reference ESP dataset
but did not have a matching molecule in the multipole moment
test set were removed from consideration in our subsequent ex-
periments.

The equations used to reconstruct the ESP of a molecule at each
vdW surface grid point are defined as2,5

Vmon( j) =
1

4∋(0
!

i

qi

|Ri j|

Vdip( j) =Vmon( j) +
1

4∋(0
!

i

µi,# Ri j,#
|Ri j|3

Vquad( j) =Vdip( j) +
1

4∋(0
!

i

∀i,#∃ (3Ri j,# Ri j,∃ ↑R2
i j&#∃ )

2|Ri j|5

Voct( j) =Vquad( j) +

1
4∋(0

!
i

∀i,#∃% (15Ri j,# Ri j,∃ Ri j,% ↑R2
i j(Ri j,# &∃% +Ri j,∃ &#% +Ri j,% &#∃ ))

6|Ri j|7
,

(S13)

where Vmon( j), Vdip( j), Vquad( j), and Voct( j) represent the recon-
structed ESP up to and including the corresponding multipole
moment order, and the index j corresponds to the j-th point on
the vdW surface of the molecule. For example, Vquad( j) repre-
sents the ESP at j-th gridpoint on the molecular vdW surface due
to the atomic monopole, atomic dipole, and atomic quadrupole
moment contributions. The index i corresponds to the i-th atom
in the molecule. The variables q, µ, ∀ , and ∀ correspond to the
atomic monopole, dipole, quadrupole, and octupole moments, re-
spectively. The vector Ri j is computed as R j - Ri, where R j is the
Cartesian coordinate vector of the j-th gridpoint along the vdW
surface and Ri is the Cartesian coordinate vector of the i-th atom
in the molecule. R2

i j corresponds to the dot product between the
Ri and R j vectors. The Greek indices #, ∃ , and % run over the
three Cartesian dimensions x, y and z, and & is the Kronecker
delta. The prefactor corresponds to Coulomb’s constant, where
(0 is the vacuum permittivity constant. Coulomb’s constant has
value ↔1389.35 kJ·Å

e2·mol . If the prefactor is expressed in these units,
the computed ESP will have kJ

mol units, assuming a test charge of
+1e.
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