Supporting Information

Davide Bincoletto¹ and Jakob S. Kottmann^{1,2,*}

¹Institute for Computer Science, University of Augsburg, Germany ²Center for Advanced Analytics and Predictive Sciences, University of Augsburg, Germany (Dated: September 12, 2025)

1. Full tables

Tables I and II show all the numerical results displayed in the Figures of the main manuscript.

Table I. Full results number of measurement groups needed for different reduction methods. In Scenario I and II we considered the number of steps that achieved the lowest error. Free H_6 refers to randomized molecule geometries and the values correspond to mean and standard deviation of the sample.

Method	Linear H ₄	Square H ₄	Linear H ₆	Circular H ₆	Free H ₆	Linear H ₈			
Original H	361	357	1623	1795	1382 ± 265	3985			
Pauli-grouping									
$_{ m LF}$	28	21	90	91	74 ± 15	154			
RLF	19	22	60	64	54 ± 8	111			
SI	19	19	68	77	64 ± 9	114			
Fermionic-grouping									
LR	10	11	22	22	20 ± 2	33			
FFF-LR	10	11	22	22	20 ± 2	33			
This work									
Scenario I	9	9	9	15	45±38	6			
Scenario II	9	9	9	15	12 ± 20	6			

Table II. Full results number of measurement needed for different reduction methods. Every number is multiplied by $\times 10^4$. Free H₆ refers to randomized molecule geometries and the values correspond to mean and standard deviation of the sample.

Method	Linear H ₄	Square H ₄	Linear H ₆	Circular H ₆	Free H ₆	Linear H ₈				
Pauli-grouping										
$_{ m LF}$	11.89	6.41	19.10	35.10	16.06 ± 6.36	26.88				
RLF	4.99	9.94	22.24	27.08	16.60 ± 6.65	25.89				
SI	3.48	2.77	3.58	4.27	$4.60{\pm}2.15$	3.60				
Fermionic-grouping										
LR	119.96	167.26	164.59	268.19	253.73 ± 64.54	237.93				
FFF-LR	3.89	155.24	3.74	258.04	16.13 ± 7.57	3.17				
This work										
Scenario I	2.28	2.44	2.55	3.17	5.69 ± 4.57	2.60				
Scenario II	2.19	2.44	2.35	3.17	$4.94{\pm}4.78$	2.48				

 $^{^*}$ E-mail:jakob.kottmann@uni-a.de

GLOSSARY

LF: Large First [1]

RLF: Recursive Largest First [1]

SI: Sorted Insertion [2, 3]

LR: Low-rank decomposition [4, 5]

FFF-LR: Fluid Fermionic Fragments [6]

2. Visualization of HCB elements

The operators α_k , β_{kl} , γ_{kl} and δ_{kl} presented in the main manuscript account for multiple creation and destruction fermionic operators with all possible spin combinations. In Figure 1 we display a visual representation of all the terms that one needs to take into consideration and why we can interpret them as paired-electrons or quasi-bosonic particle creation and destruction operators. In each of the four operators we end up with two terms which provide the same contribution. The $\frac{1}{2}$ coefficient in the Hamiltonian definition takes care of this repetition.

^[1] V. Verteletskyi, T.-C. Yen, and A. F. Izmaylov, Measurement optimization in the variational quantum eigensolver using a minimum clique cover, Journal of Chemical Physics **152**, 124114 (2020).

^[2] O. Crawford, B. van Straaten, D. Wang, T. Parks, E. Campbell, and S. Brierley, Efficient quantum measurement of Pauli operators in the presence of finite sampling error, arxiv:1908.06942 (2019), arxiv:1908.06942.

^[3] Z. P. Bansingh, T.-C. Yen, P. D. Johnson, and A. F. Izmaylov, Fidelity Overhead for Nonlocal Measurements in Variational Quantum Algorithms, 126, 7007.

^[4] W. J. Huggins, J. R. McClean, N. C. Rubin, Z. Jiang, N. Wiebe, K. B. Whaley, and R. Babbush, Efficient and noise resilient measurements for quantum chemistry on near-term quantum computers, npj Quantum Information 7, 1.

^[5] T.-C. Yen and A. F. Izmaylov, Cartan Subalgebra Approach to Efficient Measurements of Quantum Observables, PRX Quantum 2, 040320.

^[6] S. Choi, I. Loaiza, and A. F. Izmaylov, Fluid fermionic fragments for optimizing quantum measurements of electronic Hamiltonians in the variational quantum eigensolver, Quantum 7, 889, 2208.14490.

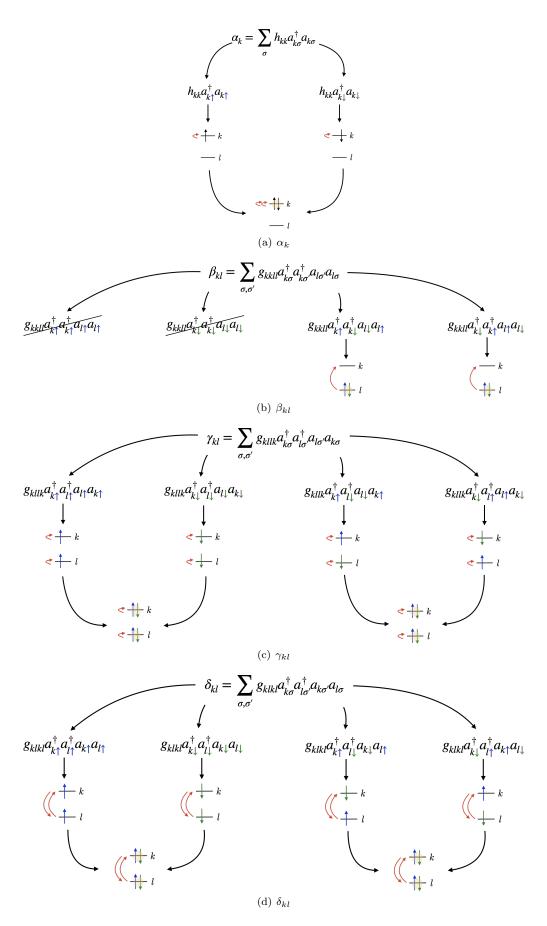


Figure 1. Visualization of HCB elements. Each operator is expanded in all the possible spin combinations. These are then visually represented to explicit the paired-electrons, or quasi-bosonic particles, interpretation. The first and second terms stemming from β_{kl} with all coherent spins are not allowed due to fermionic operators commutativity properties.