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S1 Melting point distribution

The distribution of melting points in the IL melting point databaseS1 is shown in Figure S1.

The melting points range from 177 K to 632 K, with 60% of the ILs having melting points

below 373 K. The mean melting point is 361 K.

Figure S1: Melting point histogram of ILs. The red dashed line indicates the room temper-
ature threshold of 373 K.
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S2 Melting point classification model

The melting point is closely related to the Gibbs free energy of fusion (∆Gfus). When

∆fusG
T < 0, it indicates that the melting point is lower than the given temperature T . In this

work, we focus on ILs with melting points below 373 K, corresponding to ∆fusG
T =373K < 0.

Direct calculation of ∆fusG
T =373K is challenging, but fortunately, this value can be approxi-

mated using empirical equations and simple linear models.

S2.1 The estimation of lattice enthalpy

There is a Gibbs energy equation to describe the relationship between the Gibbs free energy

of fusion the temperature (T ), and the enthalpy (∆fusH) and entropy of fusion (∆fusS),

∆fusG = ∆fusH − T∆fusS. (1)

Here, ∆Gfus = 0 at the melting point. To calculate the Gibbs free energy of fusion, Krossing

et al. S2 proposed using the Born-Fajans-Haber cycle to correlate the energy with lattice and

solvation Gibbs energies,

∆fusG
T = ∆lattG

T − ∆solvGT , (2)

where the lattice Gibbs free energy can be calculated by:

∆lattG
T = ∆lattH

T − T∆lattS, (3)

where the lattice enthalpy, ∆lattH
T , is calculated as:

∆lattH
T = UPOT + 2RT , (4)
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where UPOT represents the lattice potential energy and can be estimated using the method

proposed by Jenkins et al. S3 :

UPOT = 2( α
3
√

Vm

+ β). (5)

The molecular volume can be estimated using the atom-contribution method described by

Hofmann S4 :

Vm =
n∑
i

aivi, (6)

where n is the number of unique atom types in the molecule, ai and vi are the count of the

atom type i and the contribution volume of the atom type i, respectively. Based on the find-

ings of Krossing et al. S2 , this volume estimation method provides a reliable approximation

of the lattice enthalpy ∆lattH
T .

S2.2 The estimation of lattice entropy

The lattice entropy (∆lattS) can be determined using gas-phase entropy (Sgas) and solid-

phase entropy (Ssolid):

∆lattS = Sgas − Ssolid, (7)

where the solid-phase entropy can also be estimated based on the molecular volume:

Ssolid = kVm + c, (8)

where k and c are empirical parameters (1360 J/(K · mol · nm3) and 15 J/(K · mol), respec-

tively).

For the gas entropy, Krossing et al. S2 employed the TURBOMOLE software.S5 How-

ever, since our goal is to apply the melting point classification model for high-throughput

screening, we required a faster approach. Instead of following their method, we adopted an

alternative strategy based on the work of Venkatraman and Roy S6 , which predicts gas-phase

entropy using molecular surface curvatures. Since their code is based on JavaScript and only
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applicable to websites, we rebuilt their model in Python. In the original work, van der Waals

(vdW) surfaces were first generated using atom-centred Gaussian distributions:

G(x) =
∑

i

exp
(

−(|x − ri| − ai)
σ

)
(9)

where ri is the position of ith atom center, and ai is the corresponding vdW radius. In

this work, we generated 3D molecular structures from SMILES using RDKitS7 and obtained

vdW radii from RDKit as well. The parameter σ controls surface smoothness, and we used

the same value (σ = 0.1) as in the original paper. We then constructed a cube grid with a

padding of 2.0 and a spacing of 0.2, computing G(x) at each grid point. A vdW threshold

of 0.1 was applied to define the vdW surfaces.S6 An example of a generated vdW surface is

shown in Fig. S2.

Figure S2: vdW surface of the cation Cc1sc[n+](-c2ccc(Br)cc2)c1C.

After obtaining vdW surfaces, the curvedness C for each triangle in the surface using the

principal curvatures κ1 and κ2 was calculated by:

C = 2
π

ln
[

κ2
1 + κ2

2
2

]
. (10)

Next, the Shannon shape entropy was computed as a molecular descriptor to estimate gas
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entropy:

HC
shape = −

ntri∑
j=1

[ρ (Cj) log2 (ρ (Cj))] · Aj, (11)

where the Aj is the area of the jth triangle and ρ (Cj) is the probability distribution of

curvedness values Cj. In this work, we constructed a curvedness histogram with 64 bins to

estimate these probabilities.

Finally, the gas-phase entropy was estimated by fitting a linear function:

Sgasphase = m · HC
shape + c. (12)

We used the same database (the gas-phase entropy database) as the original paperS6 to train

the linear model. The dataset was split into a training set and a test set with a ratio of

80:20. The fitting results were m = 8.703 and c = 70.93. The plot of the predicted gas-phase

entropy versus the experimental values is shown in Figure S3. The results indicate that this

simple linear model achieves good performance on the gas-phase entropy prediction with an

R2 value of 0.87 and a root mean square error (RMSE) of 32.42 J/(mol · K).

Since ILs are mixtures of ions, generating their geometries is challenging. In this work,

we computed the gas-phase entropy separately for cations and anions and then summed

their contributions to estimate the total gas-phase entropy of ILs. To validate the gas-phase

entropy prediction model for ions, we compared our predicted values with experimentally

measured gas-phase entropies of several common IL cations and anions reported by Krossing

et al. S2 . The results, presented in Table S1, show that the predicted gas-phase entropies

closely match the experimental values.

Table S1: Performance of the gas-phase entropy prediction model on ions of ILs (kJ/(mol · K)

ion experimentalS2 predicted
[EMIM]+ 0.3807 0.3992
[BF4]− 0.2700 0.2822
[TfO]− 0.3632 0.3952

[BMIM]+ 0.4719 0.4422
[PF6]− 0.3498 0.3130
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Figure S3: Predicted gas-phase entropy versus experimental gas-phase entropy. The dashed
line represents perfect predictions. The predicted gas-phase entropies closely match the
experimental values, with an R2 of 0.87 and an RMSE of 32.42 J/(mol · K).

S2.3 Flexibility and SASA calculation

In this work, we adopted the approach proposed by Dannenfelser and Yalkowsky S8 to esti-

mate molecular flexibility. They defined the number of effective torsional angles, τ , as an

indicator of molecular flexibility, calculated using the following formula:

τ = SP3 + 0.5SP2 + 0.5RING − 1 (13)

where SP3, SP2, RING represent the number of SP3-hybridised, SP2-hybridised, and ring

groups, respectively. In this work, we used SMARTS patterns to identify the SP2 and SP3

groups. Specifically, we included SP3-hybridised C, N, O, and S-related groups for SP3

groups, while SP2-hybridised C, N, and O-related groups for SP2 groups. To determine

the number of rings, we first identified ring structures and their corresponding atom indices

using RDKit. We then merged rings that shared common atoms to obtain the final ring

count. The SASA values were also calculated using RDKit.
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S3 MD for melting point estimation

In this work, we modified the MD workflow from Karu et al. S9 to enable the automated

estimation of IL melting points. As illustrated in Fig. S4, the workflow consists of three main

steps: (1) preparing GROMACS input files, (2) running MD in different configurations, and

(3) analysing diffusion coefficients to estimate the melting point. The code for this workflow

is available at https://github.com/fate1997/MD4IL.

Figure S4: MD workflow for melting point estimation of ILs
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S3.1 MD preparation

In the original study, GROMACS input files were prepared manually. To minimise user

input and enable an automated workflow, we chose to start from SMILES representations

of ILs. Given an IL SMILES string, we first split it into separate SMILES strings for the

cation and anion. For each ion, we generated an initial 3D geometry using the ETKDGv3

distance geometry method in RDKit and saved it as an XYZ file. We then optimised the

geometry and computed atomic charges using the xTB software.S10 The results were saved

in MOL2 format. Using the MOL2 file as input, we assigned force field parameters to each

atom with the Sobtop software.S11 The GAFF force fieldS12 was used by default to generate

GROMACS input files for each ion.

S3.2 MD simulation

The MD simulation process consists of two main steps: (1) simulating the solid-phase struc-

ture and (2) performing a production run to analyse the relationship between diffusion

coefficients and temperature. The initial molecular systems were randomly generated us-

ing Packmol.S13 These structures were first equilibrated through a short MD run using the

steepest descent integrator. The solid-phase structures were then obtained via a 200 ps NVT

simulation, during which the temperature was gradually reduced from 1000 K to 1 K over

100 ps and subsequently maintained at 1 K for another 100 ps. Since the exact arrangement

of ions in the solid phase is unknown, Karu et al. S9 proposed constructing different potential

well lattices by combining CsCl-type and NaCl-type ionic lattices with lattice vector ratios

of 3:2:2, 3:3:2, 3:3:3, and 4:3:2. After this initial structuring, six additional 500-ps-long NVT

simulations were performed using the potential wells. In simulations 1, 3, and 5, only the

anions were allowed to move, while in simulations 2, 4, and 6, only the cations were allowed

to move.

Following the solid-phase simulations, the system was first equilibrated at 175 K for 2.5

ns using an NPT ensemble. The temperature was then gradually increased to 600 K over 42.5

S-10



ns. The diffusion coefficients were subsequently calculated to estimate the melting point.

The cut-off for van der Waals and electrostatic interactions was 1.3 nm. The particle-mesh

Ewald model was used to account for the long-range electrostatic interactions with 0.10 nm

Fourier spacing.

S3.3 Melting point estimation

Melting points are estimated by identifying the intersection of the diffusion coefficients for

the solid and liquid phases. The relationship between the diffusion coefficient (D) and

temperature (T ) can be described by the Arrhenius equation:

ln D = ln D0 − EA

RT
, (14)

where EA denotes the diffusion activation energy and D0 is the pre-exponent factor. Based

on this equation, the relationship between the diffusion coefficient and the reciprocal of

temperature is represented by two linear segments. The melting point is determined by

finding the intersection point of these two lines, which can be identified by maximising the

coefficient of determination (R2) for the two fitted lines. For each IL, we conducted MD

simulations in eight configurations with different ratios and packages. The final melting

point was determined by selecting the highest estimated melting point.
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S3.4 Performance

To assess the accuracy of the MD workflow in estimating the melting points of ILs, we

randomly selected 20 ILs from the melting point database and computed their melting points

using the workflow. As shown in Figure S5, the estimated values align well with experimental

data, yielding an RMSE of 39.6 K. The performance is comparable, and in some cases better

than, the performance reported by existing melting point prediction models.S1,S14

Figure S5: MD-estimated melting point (K) vs. experimental melting point (K)
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S4 Generated ILs from link prediction

To assess whether the ILs generated through link prediction have relatively low melting

points, we conducted MD simulations on 10 randomly selected ILs. As shown in Figure

S6, most of the generated ILs exhibit low-melting points, with 6 out of 10 having melting

points below 373 K. Since the collected IL database includes many ILs that are not liquids

below 373 K, it is reasonable that some ILs generated through link prediction also have high

melting points. The corresponding plots to determine melting points are shown in Figure

S7 and Figure S8.

Figure S6: MD-estimated melting points (K) of expanded ILs from link prediction. The ILs
are sorted by their MD-estimated melting points. ILs outlined in red have melting points
below 373 K; those in pink are slightly above the threshold (within 15 K); and those in blue
exhibit significantly higher melting points.
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Figure S7: The diffusion coefficient (D) dependence on temperature (T) during annealing
simulation for expanded ILs 1-6. The left-top number indicates the corresponding molecules
in Figure S6.
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Figure S8: The diffusion coefficient (D) dependence on temperature (T) during annealing
simulation for expanded ILs 7-10. The left-top number indicates the corresponding molecules
in Figure S6.

S-15



S5 Generated ILs from VAE

To assess whether the ILs generated by the VAE have relatively low-melting points, we

conducted MD simulations on 20 randomly selected ILs. Notably, these ILs had already

passed the post-filtering module. As shown in Figure S9, most of the generated ILs exhibit

low-melting points, with 18 out of 20 having melting points below 373 K. The corresponding

plots to determine melting points are shown in Figure S10, S11, S12, and S13.

Figure S9: MD-estimated melting points (K) of generated ILs from VAE. The ILs are sorted
by their MD-estimated melting points. ILs outlined in red have melting points below 373 K,
and those in pink are slightly above the threshold (within 15 K).
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Figure S10: The diffusion coefficient (D) dependence on temperature (T) during annealing
simulation for generated ILs 1-6. The left-top number indicates the corresponding molecules
in Figure S9.
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Figure S11: The diffusion coefficient (D) dependence on temperature (T) during annealing
simulation for generated ILs 7-12. The left-top number indicates the corresponding molecules
in Figure S9.
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Figure S12: The diffusion coefficient (D) dependence on temperature (T) during anneal-
ing simulation for generated ILs 13-18. The left-top number indicates the corresponding
molecules in Figure S9.
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Figure S13: The diffusion coefficient (D) dependence on temperature (T) during anneal-
ing simulation for generated ILs 19-20. The left-top number indicates the corresponding
molecules in Figure S9.
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S6 Melting point distribution

To further validate the melting points of the generated ILs, we predicted the melting points

for ILs from the collected dataset, link prediction, and VAE. We adopted the GNN model

from Feng et al. S14 , which has demonstrated strong performance in IL melting point predic-

tion. The resulting melting point distributions are shown in Figure S14. Most ILs from the

collected database, link prediction, and VAE are classified as low-melting-point ILs. More-

over, the proportion of low-melting-point ILs in the ILs generated by VAE is higher than

that in the collected database, indicating an increased tendency to generate ILs with lower

melting points.

Figure S14: MD Estimated melting points (K) of generated ILs from VAE
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