Supporting Information:

Toward Accelerating Rare-Earth Metal Extraction Using Equivariant Neural Networks

Ankur K. Gupta,* Caitlin V. Hetherington, and Wibe A. de Jong*

Applied Mathematics and Computational Research Division, Lawrence Berkeley National

Laboratory, Berkeley CA 94720

E-mail: ankur@lbl.gov; wadejong@lbl.gov

Table S1: Charge of the four fundamental ligands present in the dataset: hydroxypyridinone (HOPO), hydroxypyridinone's sulfur analogue (thio-HOPO), catecholamide (CAM) and catecholamide's sulfur analogue (thio-CAM).

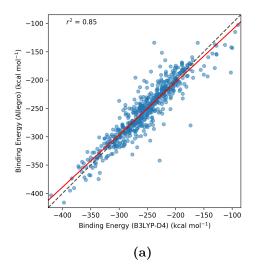
Ligand	Charge
НОРО	-1
Thio-HOPO	-1
CAM	-2
Thio-CAM	-2

Table S2: Spin multiplicity of the 16 rare-earth element metals (Sc, Y, and lanthanides (La–Lu)) present in the dataset.

Metal Cation	Spin Multiplicity
La ³⁺	1
γ3+	1
Ce ³⁺	2
Pr³+	3
Nd ³⁺	4
Pm³+	5
Sm ³⁺	6
Eu³+	7
Gd ³⁺	8
Tb ³⁺	7
Dy ³⁺	6
Ho ³⁺	5
Er³+	4
Tm ³⁺	3
Yb³+	2
Lu³+	1

Table S3: Hyperparameters used in the Allegro model trained on absolute energies, binding energies and delta-ML energies.

Hyperparameters	Allegro Model
Number of layers	2
I _{max}	2
2-body latent multi-layer perceptron (MLP)	[8, 16, 32, 64]
Latent MLP	[8, 16, 32, 64]
Final edge-energy MLP	[16]
Tensor features (env embedded multiplicity)	2/4



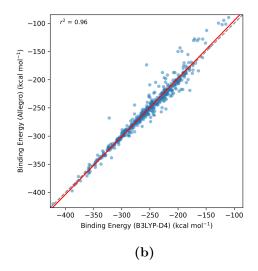
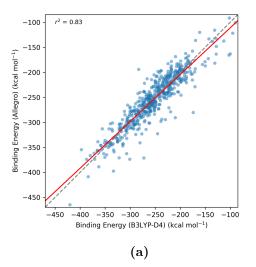


Figure S1: Parity plots comparing binding energies predicted by the Allegro model (features = 2) against DFT-calculated values (B3LYP-D4) for the test set. (a) Results using strategy 1, where absolute energies were predicted first ($r^2 = 0.85$). (b) Results using strategy 2, where binding energies were predicted directly ($r^2 = 0.96$). Binding energies are in kcal mol⁻¹. The dashed black line represents perfect correlation (y=x), while the solid red line indicates the line of best fit.



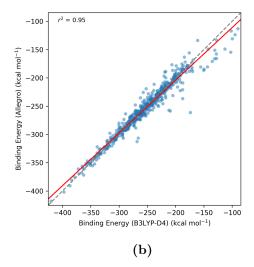
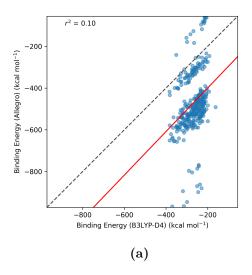


Figure S2: Parity plots comparing binding energies predicted using the Allegro (features = 2) Δ -ML approach against DFT-calculated values (B3LYP-D4) for the test set. (a) Results using Δ -ML strategy 1, where the correction was learned on absolute energies ($r^2 = 0.83$). (b) Results using Δ -ML strategy 2, where the correction was learned directly on binding energies ($r^2 = 0.95$). Binding energies are in kcal mol⁻¹. The dashed black line represents perfect correlation (y=x), while the solid red line indicates the line of best fit.



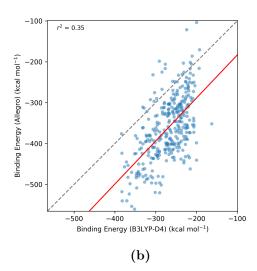
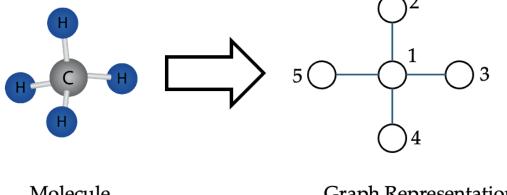


Figure S3: Parity plots comparing binding energies for the out-of-sample HDEV test set predicted using Allegro (features = 4) against DFT-calculated values (B3LYP-D4). (a) Results using strategy 1, where absolute energies were predicted first ($r^2 = 0.10$). (b) Results using Δ -ML strategy 1, where the correction was learned on absolute energies ($r^2 = 0.35$). Binding energies are in kcal mol⁻¹. The dashed black line represents perfect correlation (y=x), while the solid red line indicates the line of best fit.



Molecule

Graph Representation

Conventional GNN per-atom: $E = \sum_{i} E_{i}$

Allegro per-pair: $E = \sum_i \sum_j E_{ij}$

Figure S4: Schematic of a Graph Neural Network (GNN) for chemistry. A molecule (methane, left) is represented as a graph (right), where atoms are treated as nodes and bonds as edges. The figure also contrasts the common per-atom energy decomposition $(E = \sum_i E_i)$ with the per-pair energy decomposition $(E = \sum_i \sum_j E_{ij})$ used by the Allegro architecture.